TY - JOUR
T1 - Effect of dose reduction on the ability of digital mammography to detect simulated microcalcifications
AU - Yakabe, Mari
AU - Sakai, Shuji
AU - Yabuuchi, Hidetake
AU - Matsuo, Yoshio
AU - Kamitani, Takeshi
AU - Setoguchi, Taro
AU - Cho, Mayumi
AU - Masuda, Masafumi
AU - Sasaki, Masayuki
PY - 2010/10
Y1 - 2010/10
N2 - The purpose of this article was to report the relationship between radiation dose and the ability of sentence digital mammography to detect microcalcifications. All images were acquired by computed radiography and an anthropomorphic breast phantom. The tube voltage and anode/filter combination used were 28 kVp and Mo/Mo. Simulated microcalcifications with an approximate diameter of 250-350 μm were positioned on the phantom. Groups of six microcalcifications were arranged in one of two patterns, a line cluster 1 cm long or a hexagonal cluster 4 mm wide. One of the six microcalcifications was removed to create a negative control. Each cluster was placed on 25 different points. Four levels of milliampere-second (mAs) values were applied: 100%, 50%, 25%, and 12.5%. Five staff radiologists participated in an observer performance test. All observers used a workstation with a 3-megapixel monochrome LCD monitor. The areas under the receiver-operating characteristics curves (AUC) were used to compare diagnostic performance among the four doses. The overall AUC scores were 0.97 with 100% mAs, 0.93 (n.s.) with 50%, 0.90 (p < 0.05) with 25%, and 0.81 (p < 0.01) with 12.5% mAs. Among the negative series, the percentage of images on which observers were able to identify the removed microcalcification point decreased from 88.8% with 100% mAs to 83.6% (n.s.) with 50%, 74.8% (p < 0.001) with 25%, and 67.2% (p < 0.001) with 12.5% mAs. A certain level of dose reduction in digital mammography may be an option.
AB - The purpose of this article was to report the relationship between radiation dose and the ability of sentence digital mammography to detect microcalcifications. All images were acquired by computed radiography and an anthropomorphic breast phantom. The tube voltage and anode/filter combination used were 28 kVp and Mo/Mo. Simulated microcalcifications with an approximate diameter of 250-350 μm were positioned on the phantom. Groups of six microcalcifications were arranged in one of two patterns, a line cluster 1 cm long or a hexagonal cluster 4 mm wide. One of the six microcalcifications was removed to create a negative control. Each cluster was placed on 25 different points. Four levels of milliampere-second (mAs) values were applied: 100%, 50%, 25%, and 12.5%. Five staff radiologists participated in an observer performance test. All observers used a workstation with a 3-megapixel monochrome LCD monitor. The areas under the receiver-operating characteristics curves (AUC) were used to compare diagnostic performance among the four doses. The overall AUC scores were 0.97 with 100% mAs, 0.93 (n.s.) with 50%, 0.90 (p < 0.05) with 25%, and 0.81 (p < 0.01) with 12.5% mAs. Among the negative series, the percentage of images on which observers were able to identify the removed microcalcification point decreased from 88.8% with 100% mAs to 83.6% (n.s.) with 50%, 74.8% (p < 0.001) with 25%, and 67.2% (p < 0.001) with 12.5% mAs. A certain level of dose reduction in digital mammography may be an option.
UR - http://www.scopus.com/inward/record.url?scp=77957868684&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957868684&partnerID=8YFLogxK
U2 - 10.1007/s10278-009-9203-y
DO - 10.1007/s10278-009-9203-y
M3 - Article
C2 - 19415382
AN - SCOPUS:77957868684
SN - 0897-1889
VL - 23
SP - 520
EP - 526
JO - Journal of Digital Imaging
JF - Journal of Digital Imaging
IS - 5
ER -