Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite

Gde Pandhe Wisnu Suyantara, Tsuyoshi Hirajima, Hajime Miki, Keiko Sasaki, Masashi Yamane, Eri Takida, Shigeto Kuroiwa, Yuji Imaizumi

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

A fundamental study is provided in this work to understand the effect of Fenton-like reagent made by the addition of FeSO4 in H2O2 aqueous solution on surface hydrophobicity and floatability of chalcopyrite (CuFeS2) and molybdenite (MoS2). Contact angle measurements were performed to assess the surface hydrophobicity. The contact angle results showed that Fenton-like reagent could alter the surface hydrophobicity of chalcopyrite at lower concentration of H2O2 aqueous solution compared to that of using H2O2 aqueous solution. On the other hand, molybdenite surface remained hydrophobic after the oxidation treatments using Fenton-like reagent and H2O2 aqueous solution. Surface characterizations using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) shows that the chalcopyrite surface covered with a thicker layer of oxidation products after the oxidation treatment using Fenton-like reagent, indicating a stronger surface oxidation. Flotation results were in agreement with contact angle results, showing that Fenton-like reagent could depress the floatability of chalcopyrite at lower concentration of H2O2 aqueous solution. On the other hand, molybdenite recovery remained high under various oxidation treatments owing to low surface oxidation.

Original languageEnglish
Pages (from-to)34-48
Number of pages15
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume554
DOIs
Publication statusPublished - Oct 5 2018

All Science Journal Classification (ASJC) codes

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite'. Together they form a unique fingerprint.

Cite this