TY - GEN
T1 - Effect of hydrogen on tensile properties of a ductile cast iron
AU - Matsunaga, Hisao
AU - Matsuno, Kenshin
AU - Hayashida, Katsuya
PY - 2011/7/27
Y1 - 2011/7/27
N2 - Effect of hydrogen-charging and strain rate was investigated on the tensile properties of a ductile cast iron having the microstructure comprised of ferrite/pearlite matrix and spheroidal graphites. Hydrogen-charging accelerated the process of crack growth from graphite. The crack growth acceleration resulted in a marked decrease in reduction of area at final fracture (RA). In the uncharged specimens RA was nearly constant with strain rate, whereas in the hydrogen-charged specimens RA was gradually decreased with a decrease in strain rate. Thermal desorption spectroscopy and hydrogen microprint technique revealed that in the hydrogen-charged specimen most of solute hydrogen was diffusive and mainly segregated at graphite, graphite/matrix interface zone and pearlite. Considering all the obtained results together, the hydrogen-induced degradation was attributed to a combination of the following three factors: (i) hydrogen supply to the crack tip from the graphite/matrix interface zone, (ii) hydrogen-enhanced pearlite cracking and (iii) successive hydrogen emission from the graphite and additional supply to the crack tip.
AB - Effect of hydrogen-charging and strain rate was investigated on the tensile properties of a ductile cast iron having the microstructure comprised of ferrite/pearlite matrix and spheroidal graphites. Hydrogen-charging accelerated the process of crack growth from graphite. The crack growth acceleration resulted in a marked decrease in reduction of area at final fracture (RA). In the uncharged specimens RA was nearly constant with strain rate, whereas in the hydrogen-charged specimens RA was gradually decreased with a decrease in strain rate. Thermal desorption spectroscopy and hydrogen microprint technique revealed that in the hydrogen-charged specimen most of solute hydrogen was diffusive and mainly segregated at graphite, graphite/matrix interface zone and pearlite. Considering all the obtained results together, the hydrogen-induced degradation was attributed to a combination of the following three factors: (i) hydrogen supply to the crack tip from the graphite/matrix interface zone, (ii) hydrogen-enhanced pearlite cracking and (iii) successive hydrogen emission from the graphite and additional supply to the crack tip.
UR - http://www.scopus.com/inward/record.url?scp=79960643889&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960643889&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:79960643889
SN - 9781118029473
T3 - TMS Annual Meeting
SP - 447
EP - 454
BT - TMS 2011 - 140th Annual Meeting and Exhibition, Supplemental Proceedings
T2 - TMS 2011 - 140th Annual Meeting and Exhibition
Y2 - 27 February 2011 through 3 March 2011
ER -