Effect of initial microstructure on the compactibility of rapidly solidified Ti-rich TiAl powder

M. Nishida, A. Chiba, Y. Morizono, T. Kai, J. Sugimoto

Research output: Contribution to journalConference articlepeer-review


Initial microstructure dependence of compactibility at elevated temperature in rapidly solidified Ti-rich TiAl alloy powders produced by plasma rotating electrode process (PREP) has been investigated. There were two kinds of powders with respect to the microstructure. The first one had a surface relief of a martensitic phase, which was referred as M powder. The second one had a dendritic structure, which was referred as D powder. α2+γ microduplex and α2/γ lamellar structures were formed in M and D powders of the Ti-40 at%Al alloy by heat treatment at 1273 K, respectively. The microduplex structure consisted of γ precipitate in the twin related α2 matrix with the usual orientation relationship. It was difficult to compact the D powder by hot pressing at 1273 K under 50 MPa for 14.4 ks. On the other hand, the M powder was compacted easily by hot pressing with the same condition. The twin related α2 and α2 boundary changed to random ones and the α2 and γ phases were lost the usual orientation relationship in the duplex structure during the hot pressing. In other words, the low energy boundaries were changed to the high energy ones suitable for grain boundary sliding. Dislocations were scarcely observed inside of both the α2 and γ crystal grains. It was concluded that the grain boundary sliding was a predominant deformation mode in the M powder during the hot pressing. D and M powders in Ti-45 and 47 at%Al alloys showed the same tendency as those in Ti-40 at%Al alloy during hot pressing.

Original languageEnglish
Pages (from-to)45-50
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Publication statusPublished - Jan 1 1997
Externally publishedYes
EventProceedings of the 1996 MRS Fall Meeting - Boston, MA, USA
Duration: Dec 2 1996Dec 6 1996

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Effect of initial microstructure on the compactibility of rapidly solidified Ti-rich TiAl powder'. Together they form a unique fingerprint.

Cite this