Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

Tetsuro Tomiyama, Riki Toita, Jeong Hun Kang, Haruka Koga, Shujiro Shiosaki, Takeshi Mori, Takuro Niidome, Yoshiki Katayama

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

Original languageEnglish
Article number532
Pages (from-to)1-7
Number of pages7
JournalNanoscale Research Letters
Volume6
DOIs
Publication statusPublished - Dec 1 2011

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals'. Together they form a unique fingerprint.

  • Cite this