Effect of land-use change on the urban heat island in the Fukuoka-Kitakyushu metropolitan area, Japan

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

In coastal cities, the effect of the sea breeze in mitigating the urban heat island (UHI) phenomenon has attracted attention. This study targeted the Fukuoka-Kitakyushu metropolitan area, the fourth largest metropolitan area in Japan which is also coastal. Doppler Light Detection And Ranging (LiDAR) observations were conducted in the summer of 2015 to clarify the transition of the wind field over the targeted area. To investigate the effects on the UHI of land-use change related to urbanization, the National Land Numerical Information (NLNI) land-use datasets for Japan in 1976 (NLNI-76) and 2009 (NLNI-09) were used in the Weather Research and Forecasting (WRF) model. The results of the simulation showed that most of the northern part of the Kyushu region became warmer, with an average increase of +0.236 °C for the whole simulation period. Comparing the two simulations and the Doppler LiDAR observations, the simulation results with the NLNI-09 dataset (for the year closest to the study period in 2015) showed closer conformity with the observations. The results of the simulation using NLNI-76 showed faster sea breeze penetration and higher wind velocity than the observations. These results suggest that the land-use change related to urbanization weakened the sea breeze penetration in this area.

Original languageEnglish
Article number1521
JournalSustainability (Switzerland)
Volume9
Issue number9
DOIs
Publication statusPublished - Aug 26 2017

Fingerprint

heat island
Land use
metropolitan area
land use change
heat
agglomeration area
land use
Japan
sea breeze
simulation
urbanization
penetration
conformity
wind field
wind velocity
effect
Hot Temperature
weather
land
summer

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Management, Monitoring, Policy and Law

Cite this

@article{d036f8ea8b264797a1bfcbc62fe35334,
title = "Effect of land-use change on the urban heat island in the Fukuoka-Kitakyushu metropolitan area, Japan",
abstract = "In coastal cities, the effect of the sea breeze in mitigating the urban heat island (UHI) phenomenon has attracted attention. This study targeted the Fukuoka-Kitakyushu metropolitan area, the fourth largest metropolitan area in Japan which is also coastal. Doppler Light Detection And Ranging (LiDAR) observations were conducted in the summer of 2015 to clarify the transition of the wind field over the targeted area. To investigate the effects on the UHI of land-use change related to urbanization, the National Land Numerical Information (NLNI) land-use datasets for Japan in 1976 (NLNI-76) and 2009 (NLNI-09) were used in the Weather Research and Forecasting (WRF) model. The results of the simulation showed that most of the northern part of the Kyushu region became warmer, with an average increase of +0.236 °C for the whole simulation period. Comparing the two simulations and the Doppler LiDAR observations, the simulation results with the NLNI-09 dataset (for the year closest to the study period in 2015) showed closer conformity with the observations. The results of the simulation using NLNI-76 showed faster sea breeze penetration and higher wind velocity than the observations. These results suggest that the land-use change related to urbanization weakened the sea breeze penetration in this area.",
author = "Yoichi Kawamoto",
year = "2017",
month = "8",
day = "26",
doi = "10.3390/su9091521",
language = "English",
volume = "9",
journal = "Sustainability",
issn = "2071-1050",
publisher = "MDPI AG",
number = "9",

}

TY - JOUR

T1 - Effect of land-use change on the urban heat island in the Fukuoka-Kitakyushu metropolitan area, Japan

AU - Kawamoto, Yoichi

PY - 2017/8/26

Y1 - 2017/8/26

N2 - In coastal cities, the effect of the sea breeze in mitigating the urban heat island (UHI) phenomenon has attracted attention. This study targeted the Fukuoka-Kitakyushu metropolitan area, the fourth largest metropolitan area in Japan which is also coastal. Doppler Light Detection And Ranging (LiDAR) observations were conducted in the summer of 2015 to clarify the transition of the wind field over the targeted area. To investigate the effects on the UHI of land-use change related to urbanization, the National Land Numerical Information (NLNI) land-use datasets for Japan in 1976 (NLNI-76) and 2009 (NLNI-09) were used in the Weather Research and Forecasting (WRF) model. The results of the simulation showed that most of the northern part of the Kyushu region became warmer, with an average increase of +0.236 °C for the whole simulation period. Comparing the two simulations and the Doppler LiDAR observations, the simulation results with the NLNI-09 dataset (for the year closest to the study period in 2015) showed closer conformity with the observations. The results of the simulation using NLNI-76 showed faster sea breeze penetration and higher wind velocity than the observations. These results suggest that the land-use change related to urbanization weakened the sea breeze penetration in this area.

AB - In coastal cities, the effect of the sea breeze in mitigating the urban heat island (UHI) phenomenon has attracted attention. This study targeted the Fukuoka-Kitakyushu metropolitan area, the fourth largest metropolitan area in Japan which is also coastal. Doppler Light Detection And Ranging (LiDAR) observations were conducted in the summer of 2015 to clarify the transition of the wind field over the targeted area. To investigate the effects on the UHI of land-use change related to urbanization, the National Land Numerical Information (NLNI) land-use datasets for Japan in 1976 (NLNI-76) and 2009 (NLNI-09) were used in the Weather Research and Forecasting (WRF) model. The results of the simulation showed that most of the northern part of the Kyushu region became warmer, with an average increase of +0.236 °C for the whole simulation period. Comparing the two simulations and the Doppler LiDAR observations, the simulation results with the NLNI-09 dataset (for the year closest to the study period in 2015) showed closer conformity with the observations. The results of the simulation using NLNI-76 showed faster sea breeze penetration and higher wind velocity than the observations. These results suggest that the land-use change related to urbanization weakened the sea breeze penetration in this area.

UR - http://www.scopus.com/inward/record.url?scp=85028350057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85028350057&partnerID=8YFLogxK

U2 - 10.3390/su9091521

DO - 10.3390/su9091521

M3 - Article

AN - SCOPUS:85028350057

VL - 9

JO - Sustainability

JF - Sustainability

SN - 2071-1050

IS - 9

M1 - 1521

ER -