Effect of Large-Angle Scattering between Ions and Neutral Particles on the Density Profile at the Divertor Plate

Daisuke Umezaki, Hideaki Matsuura

Research output: Contribution to journalArticlepeer-review

Abstract

The better radial transport modelling of the SOL/divertor plasmas is required to obtain quantitative agreements between experimental values and simulation results towards the proper SOL/divertor plasma prediction of the future magnetic fusion devices. Various SOL/divertor codes (e.g. SONIC, SOLPS-ITER, EDGE2D, UEDGE, EMC3-Eirene, etc.) have been developed and applied to the interpretative simulations of the present fusion devices. Above codes treats the radial transport as a diffusion model and there exists uncertainty to decide the value of the diffusion coefficients. The simulation by the SONIC has resulted in a few times larger ion flux towards the divertor plate than the experimental value observed in JT-60U possibly due to such an uncertainty of the diffusion process. To achieve the quantitative agreement between the experiments and the simulation results is indispensable to predict SOL/divertor plasma parameters of the future fusion devices. Here, radial transport was simulated by considering large-angle elastic scattering between ions and neutral particles and by applying the probability distribution function to fluid equations in the divertor plasma. It was found that the density peak and ion flux are reduced by about half.

Original languageEnglish
Pages (from-to)1-5
Number of pages5
JournalPlasma and Fusion Research
Volume16
DOIs
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Effect of Large-Angle Scattering between Ions and Neutral Particles on the Density Profile at the Divertor Plate'. Together they form a unique fingerprint.

Cite this