Effect of NbC particles on γ-ε martensitic transformation in Fe-22 mass%Mn alloys

Yoshihiko Ono, Hideshi Nakatsu, Setsuo Takaki

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In Fe-22 maas%Mn alloys containing niobium (Nb) and carbon (C), the effects of anstenite (γ) grain size and NbC particles on γ→epsilon (ε) martensitic transformation have been investigated by means of optical microscopy, transmission electron microscopy and X-ray diffractometry. Nb and C were added to give the volume fractions of 0.5 and 1% as NbC particles. Austenite grain size was altered from 3 to 30 μm through the recrystallization of deformed γ. Martensitic transformation from γ to ε was significantly suppressed by the finely dispersed NbC particles. The amount of ε martensite depends on the mean free path (m.f.p.) of NbC particles, particularly when it was reduced to 0.2 μm or less, the γ→ε martensitic transformation was completely suppressed. Such a marked suppressive effect by a small quantity of precipitates is caused by the elastic stress field around NbC particles, which has been formed to keep the coherency with the γ matrix. It was suggested that all the γ matrix is coverd with the elastic stress field when the m.f.p. of NbC particles is reduced to 0.2 μm or less. The suppression of γ→ε martensitic transformation by NbC particles is explained in termes of interaction of partial dislocations with NbC particles and their elastic stress field: The movement of partial dislocations is indispensable for the nucleation and growth of the ε martensite, but it is stopped by the finely dispersed NbC particles themselves or their elastic stress field. It is concluded that the complete suppression of the γ→ε martensitic transformation in the region of less than 0.2 μm in m.f.p. is not due to grain refining of austenite, but due to the suppression of nucleation of the ε martensite by such an interaction between partial dislocations and NbC particles.

Original languageEnglish
Pages (from-to)580-585
Number of pages6
JournalNippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
Volume61
Issue number7
DOIs
Publication statusPublished - Jan 1 1997

Fingerprint

Martensitic transformations
martensitic transformation
Niobium
Martensite
Austenite
stress distribution
Nucleation
martensite
mean free path
retarding
austenite
X ray diffraction analysis
Refining
Optical microscopy
Precipitates
Volume fraction
Carbon
grain size
niobium alloys
nucleation

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

Cite this

Effect of NbC particles on γ-ε martensitic transformation in Fe-22 mass%Mn alloys. / Ono, Yoshihiko; Nakatsu, Hideshi; Takaki, Setsuo.

In: Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, Vol. 61, No. 7, 01.01.1997, p. 580-585.

Research output: Contribution to journalArticle

@article{2ac1007c718746a1bb1308d681dc5146,
title = "Effect of NbC particles on γ-ε martensitic transformation in Fe-22 mass{\%}Mn alloys",
abstract = "In Fe-22 maas{\%}Mn alloys containing niobium (Nb) and carbon (C), the effects of anstenite (γ) grain size and NbC particles on γ→epsilon (ε) martensitic transformation have been investigated by means of optical microscopy, transmission electron microscopy and X-ray diffractometry. Nb and C were added to give the volume fractions of 0.5 and 1{\%} as NbC particles. Austenite grain size was altered from 3 to 30 μm through the recrystallization of deformed γ. Martensitic transformation from γ to ε was significantly suppressed by the finely dispersed NbC particles. The amount of ε martensite depends on the mean free path (m.f.p.) of NbC particles, particularly when it was reduced to 0.2 μm or less, the γ→ε martensitic transformation was completely suppressed. Such a marked suppressive effect by a small quantity of precipitates is caused by the elastic stress field around NbC particles, which has been formed to keep the coherency with the γ matrix. It was suggested that all the γ matrix is coverd with the elastic stress field when the m.f.p. of NbC particles is reduced to 0.2 μm or less. The suppression of γ→ε martensitic transformation by NbC particles is explained in termes of interaction of partial dislocations with NbC particles and their elastic stress field: The movement of partial dislocations is indispensable for the nucleation and growth of the ε martensite, but it is stopped by the finely dispersed NbC particles themselves or their elastic stress field. It is concluded that the complete suppression of the γ→ε martensitic transformation in the region of less than 0.2 μm in m.f.p. is not due to grain refining of austenite, but due to the suppression of nucleation of the ε martensite by such an interaction between partial dislocations and NbC particles.",
author = "Yoshihiko Ono and Hideshi Nakatsu and Setsuo Takaki",
year = "1997",
month = "1",
day = "1",
doi = "10.2320/jinstmet1952.61.7_580",
language = "English",
volume = "61",
pages = "580--585",
journal = "Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals",
issn = "0021-4876",
publisher = "公益社団法人 日本金属学会",
number = "7",

}

TY - JOUR

T1 - Effect of NbC particles on γ-ε martensitic transformation in Fe-22 mass%Mn alloys

AU - Ono, Yoshihiko

AU - Nakatsu, Hideshi

AU - Takaki, Setsuo

PY - 1997/1/1

Y1 - 1997/1/1

N2 - In Fe-22 maas%Mn alloys containing niobium (Nb) and carbon (C), the effects of anstenite (γ) grain size and NbC particles on γ→epsilon (ε) martensitic transformation have been investigated by means of optical microscopy, transmission electron microscopy and X-ray diffractometry. Nb and C were added to give the volume fractions of 0.5 and 1% as NbC particles. Austenite grain size was altered from 3 to 30 μm through the recrystallization of deformed γ. Martensitic transformation from γ to ε was significantly suppressed by the finely dispersed NbC particles. The amount of ε martensite depends on the mean free path (m.f.p.) of NbC particles, particularly when it was reduced to 0.2 μm or less, the γ→ε martensitic transformation was completely suppressed. Such a marked suppressive effect by a small quantity of precipitates is caused by the elastic stress field around NbC particles, which has been formed to keep the coherency with the γ matrix. It was suggested that all the γ matrix is coverd with the elastic stress field when the m.f.p. of NbC particles is reduced to 0.2 μm or less. The suppression of γ→ε martensitic transformation by NbC particles is explained in termes of interaction of partial dislocations with NbC particles and their elastic stress field: The movement of partial dislocations is indispensable for the nucleation and growth of the ε martensite, but it is stopped by the finely dispersed NbC particles themselves or their elastic stress field. It is concluded that the complete suppression of the γ→ε martensitic transformation in the region of less than 0.2 μm in m.f.p. is not due to grain refining of austenite, but due to the suppression of nucleation of the ε martensite by such an interaction between partial dislocations and NbC particles.

AB - In Fe-22 maas%Mn alloys containing niobium (Nb) and carbon (C), the effects of anstenite (γ) grain size and NbC particles on γ→epsilon (ε) martensitic transformation have been investigated by means of optical microscopy, transmission electron microscopy and X-ray diffractometry. Nb and C were added to give the volume fractions of 0.5 and 1% as NbC particles. Austenite grain size was altered from 3 to 30 μm through the recrystallization of deformed γ. Martensitic transformation from γ to ε was significantly suppressed by the finely dispersed NbC particles. The amount of ε martensite depends on the mean free path (m.f.p.) of NbC particles, particularly when it was reduced to 0.2 μm or less, the γ→ε martensitic transformation was completely suppressed. Such a marked suppressive effect by a small quantity of precipitates is caused by the elastic stress field around NbC particles, which has been formed to keep the coherency with the γ matrix. It was suggested that all the γ matrix is coverd with the elastic stress field when the m.f.p. of NbC particles is reduced to 0.2 μm or less. The suppression of γ→ε martensitic transformation by NbC particles is explained in termes of interaction of partial dislocations with NbC particles and their elastic stress field: The movement of partial dislocations is indispensable for the nucleation and growth of the ε martensite, but it is stopped by the finely dispersed NbC particles themselves or their elastic stress field. It is concluded that the complete suppression of the γ→ε martensitic transformation in the region of less than 0.2 μm in m.f.p. is not due to grain refining of austenite, but due to the suppression of nucleation of the ε martensite by such an interaction between partial dislocations and NbC particles.

UR - http://www.scopus.com/inward/record.url?scp=0031192946&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031192946&partnerID=8YFLogxK

U2 - 10.2320/jinstmet1952.61.7_580

DO - 10.2320/jinstmet1952.61.7_580

M3 - Article

VL - 61

SP - 580

EP - 585

JO - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals

JF - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals

SN - 0021-4876

IS - 7

ER -