Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals

Yun Wang, Hideo Watanabe, Dongyue Chen, Junya Kaneda, Naoto Shigenaka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In order to elevate the resistance against irradiation-assisted stress corrosion cracking (IASCC) of reactor pressure vessel internals (RINs) in the environment of boiling water reactor (BWR), austenitic stainless steels (SSs) with tantalum (Ta) addition have been examined. The oversized element Ta is considered to reduce the concentration of free vacancy due to trapping effect. It is expected that radiation-induced grain boundary (GB) segregation of constituent element such as chromium (Cr) can be suppressed by Ta addition. In this study the irradiation tests were performed with Fe2+ ion in a dose range from 0.1 to 3 dpa on the specimens sampled from base materials and heat-affected zone (HAZ) of welding joint plates. Considering the Cr segregation might also occur during the heat history of welding process, we first confirmed and discussed the effect of Ta addition to SUS310S on irradiation resistance properties in the HAZ. The radiation-induced segregation (RIS) on random GBs in HAZ after the irradiation tests was evaluated by scanning transmission electron microscope (STEM) and X-ray energy dispersive spectroscopy (XEDS). The improvement of resistance against RIS by Ta addition was evaluated. Further the effect of Ta addition on radiation induced hardening was investigated on the base materials, but from the results of nanoindentation test the obvious relief of radiation-induced hardening was not confirmed. The corrosion properties after heavy ion irradiation were also discussed on the base materials in the conditions of electrochemical potentiokinetic reactivation (EPR) test. GB corrosion was observed on the ion-irradiated surface of commercial material of SUS310S. However, no GB corrosion was observed on the irradiated surface of SUS310S with 0.4 % Ta addition, indicating the effect of Ta addition on the improvement of resistance against IASCC.

Original languageEnglish
Title of host publicationProceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!"
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9784888983051
Publication statusPublished - May 18 2019
Event27th International Conference on Nuclear Engineering: Nuclear Power Saves the World!, ICONE 2019 - Tsukuba, Ibaraki, Japan
Duration: May 19 2019May 24 2019

Publication series

NameInternational Conference on Nuclear Engineering, Proceedings, ICONE
Volume2019-May

Conference

Conference27th International Conference on Nuclear Engineering: Nuclear Power Saves the World!, ICONE 2019
CountryJapan
CityTsukuba, Ibaraki
Period5/19/195/24/19

Fingerprint

Tantalum
Austenitic stainless steel
Pressure vessels
Irradiation
Radiation
Heat affected zone
Grain boundaries
Stress corrosion cracking
Corrosion
Hardening
Chromium
Welding
Boiling water reactors
Ions
Nanoindentation
Ion bombardment
Heavy ions
Vacancies
Electron microscopes
Scanning

All Science Journal Classification (ASJC) codes

  • Nuclear Energy and Engineering

Cite this

Wang, Y., Watanabe, H., Chen, D., Kaneda, J., & Shigenaka, N. (2019). Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals. In Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!" (International Conference on Nuclear Engineering, Proceedings, ICONE; Vol. 2019-May). American Society of Mechanical Engineers (ASME).

Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals. / Wang, Yun; Watanabe, Hideo; Chen, Dongyue; Kaneda, Junya; Shigenaka, Naoto.

Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!". American Society of Mechanical Engineers (ASME), 2019. (International Conference on Nuclear Engineering, Proceedings, ICONE; Vol. 2019-May).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Wang, Y, Watanabe, H, Chen, D, Kaneda, J & Shigenaka, N 2019, Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals. in Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!". International Conference on Nuclear Engineering, Proceedings, ICONE, vol. 2019-May, American Society of Mechanical Engineers (ASME), 27th International Conference on Nuclear Engineering: Nuclear Power Saves the World!, ICONE 2019, Tsukuba, Ibaraki, Japan, 5/19/19.
Wang Y, Watanabe H, Chen D, Kaneda J, Shigenaka N. Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals. In Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!". American Society of Mechanical Engineers (ASME). 2019. (International Conference on Nuclear Engineering, Proceedings, ICONE).
Wang, Yun ; Watanabe, Hideo ; Chen, Dongyue ; Kaneda, Junya ; Shigenaka, Naoto. / Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals. Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!". American Society of Mechanical Engineers (ASME), 2019. (International Conference on Nuclear Engineering, Proceedings, ICONE).
@inproceedings{9f70af88840e4191a0ccefc82368f663,
title = "Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals",
abstract = "In order to elevate the resistance against irradiation-assisted stress corrosion cracking (IASCC) of reactor pressure vessel internals (RINs) in the environment of boiling water reactor (BWR), austenitic stainless steels (SSs) with tantalum (Ta) addition have been examined. The oversized element Ta is considered to reduce the concentration of free vacancy due to trapping effect. It is expected that radiation-induced grain boundary (GB) segregation of constituent element such as chromium (Cr) can be suppressed by Ta addition. In this study the irradiation tests were performed with Fe2+ ion in a dose range from 0.1 to 3 dpa on the specimens sampled from base materials and heat-affected zone (HAZ) of welding joint plates. Considering the Cr segregation might also occur during the heat history of welding process, we first confirmed and discussed the effect of Ta addition to SUS310S on irradiation resistance properties in the HAZ. The radiation-induced segregation (RIS) on random GBs in HAZ after the irradiation tests was evaluated by scanning transmission electron microscope (STEM) and X-ray energy dispersive spectroscopy (XEDS). The improvement of resistance against RIS by Ta addition was evaluated. Further the effect of Ta addition on radiation induced hardening was investigated on the base materials, but from the results of nanoindentation test the obvious relief of radiation-induced hardening was not confirmed. The corrosion properties after heavy ion irradiation were also discussed on the base materials in the conditions of electrochemical potentiokinetic reactivation (EPR) test. GB corrosion was observed on the ion-irradiated surface of commercial material of SUS310S. However, no GB corrosion was observed on the irradiated surface of SUS310S with 0.4 {\%} Ta addition, indicating the effect of Ta addition on the improvement of resistance against IASCC.",
author = "Yun Wang and Hideo Watanabe and Dongyue Chen and Junya Kaneda and Naoto Shigenaka",
year = "2019",
month = "5",
day = "18",
language = "English",
series = "International Conference on Nuclear Engineering, Proceedings, ICONE",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - {"}Nuclear Power Saves the World!{"}",

}

TY - GEN

T1 - Effect of Ta addition on irradiation resistance properties of austenitic stainless steels for reactor pressure vessel internals

AU - Wang, Yun

AU - Watanabe, Hideo

AU - Chen, Dongyue

AU - Kaneda, Junya

AU - Shigenaka, Naoto

PY - 2019/5/18

Y1 - 2019/5/18

N2 - In order to elevate the resistance against irradiation-assisted stress corrosion cracking (IASCC) of reactor pressure vessel internals (RINs) in the environment of boiling water reactor (BWR), austenitic stainless steels (SSs) with tantalum (Ta) addition have been examined. The oversized element Ta is considered to reduce the concentration of free vacancy due to trapping effect. It is expected that radiation-induced grain boundary (GB) segregation of constituent element such as chromium (Cr) can be suppressed by Ta addition. In this study the irradiation tests were performed with Fe2+ ion in a dose range from 0.1 to 3 dpa on the specimens sampled from base materials and heat-affected zone (HAZ) of welding joint plates. Considering the Cr segregation might also occur during the heat history of welding process, we first confirmed and discussed the effect of Ta addition to SUS310S on irradiation resistance properties in the HAZ. The radiation-induced segregation (RIS) on random GBs in HAZ after the irradiation tests was evaluated by scanning transmission electron microscope (STEM) and X-ray energy dispersive spectroscopy (XEDS). The improvement of resistance against RIS by Ta addition was evaluated. Further the effect of Ta addition on radiation induced hardening was investigated on the base materials, but from the results of nanoindentation test the obvious relief of radiation-induced hardening was not confirmed. The corrosion properties after heavy ion irradiation were also discussed on the base materials in the conditions of electrochemical potentiokinetic reactivation (EPR) test. GB corrosion was observed on the ion-irradiated surface of commercial material of SUS310S. However, no GB corrosion was observed on the irradiated surface of SUS310S with 0.4 % Ta addition, indicating the effect of Ta addition on the improvement of resistance against IASCC.

AB - In order to elevate the resistance against irradiation-assisted stress corrosion cracking (IASCC) of reactor pressure vessel internals (RINs) in the environment of boiling water reactor (BWR), austenitic stainless steels (SSs) with tantalum (Ta) addition have been examined. The oversized element Ta is considered to reduce the concentration of free vacancy due to trapping effect. It is expected that radiation-induced grain boundary (GB) segregation of constituent element such as chromium (Cr) can be suppressed by Ta addition. In this study the irradiation tests were performed with Fe2+ ion in a dose range from 0.1 to 3 dpa on the specimens sampled from base materials and heat-affected zone (HAZ) of welding joint plates. Considering the Cr segregation might also occur during the heat history of welding process, we first confirmed and discussed the effect of Ta addition to SUS310S on irradiation resistance properties in the HAZ. The radiation-induced segregation (RIS) on random GBs in HAZ after the irradiation tests was evaluated by scanning transmission electron microscope (STEM) and X-ray energy dispersive spectroscopy (XEDS). The improvement of resistance against RIS by Ta addition was evaluated. Further the effect of Ta addition on radiation induced hardening was investigated on the base materials, but from the results of nanoindentation test the obvious relief of radiation-induced hardening was not confirmed. The corrosion properties after heavy ion irradiation were also discussed on the base materials in the conditions of electrochemical potentiokinetic reactivation (EPR) test. GB corrosion was observed on the ion-irradiated surface of commercial material of SUS310S. However, no GB corrosion was observed on the irradiated surface of SUS310S with 0.4 % Ta addition, indicating the effect of Ta addition on the improvement of resistance against IASCC.

UR - http://www.scopus.com/inward/record.url?scp=85071393432&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071393432&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85071393432

T3 - International Conference on Nuclear Engineering, Proceedings, ICONE

BT - Proceedings of the 27th International Conference on Nuclear Engineering, ICONE 2019 - "Nuclear Power Saves the World!"

PB - American Society of Mechanical Engineers (ASME)

ER -