TY - GEN
T1 - Effect of three-dimensional electric field and heat conduction to electrodes on the temperature rise during irreversible electroporation
AU - Nomura, Seiji
AU - Kurata, Kosaku
AU - Takamatsu, Hiroshi
PY - 2011
Y1 - 2011
N2 - The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.
AB - The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.
UR - http://www.scopus.com/inward/record.url?scp=85088716475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088716475&partnerID=8YFLogxK
U2 - 10.1115/ajtec2011-44214
DO - 10.1115/ajtec2011-44214
M3 - Conference contribution
AN - SCOPUS:85088716475
SN - 9780791838921
T3 - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
BT - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
PB - American Society of Mechanical Engineers
T2 - ASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
Y2 - 13 March 2011 through 17 March 2011
ER -