Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers

Yusuke Arima, Hiroo Iwata

Research output: Contribution to journalArticle

838 Citations (Scopus)

Abstract

Self-assembled monolayers (SAMs) of alkanethiols, which can provide flat and chemically well-defined surfaces, were employed as model surfaces to understand cellular interaction with artificial materials. SAMs presenting a wide range of wettabilities were prepared by mixing two kinds of alkanethiols carrying terminal methyl (CH3), hydroxyl (OH), carboxylic acid (COOH), or amino (NH2) groups. Adhesion behavior of human umbilical vein endothelial cells (HUVECs) and HeLa cells on these mixed SAMs were examined. The number of adhered HUVECs reached a maximum on CH3/OH mixed SAMs with a water contact angle of 40°, while cell adhesion increased with decreasing water contact angle up to 60-70° and then leveled off on CH3/COOH and CH3/NH2 mixed SAMs. Numbers of adhered HeLa cells showed a maximum on CH3/OH and CH3/COOH mixed SAMs with a water contact angle of 50°. These facts suggest that cell adhesion is mainly determined by surface wettability, but is also affected by the surface functional group, its surface density, and the kinds of cells. The effect of exchange of adsorbed proteins on cell adhesion was also examined. HUVECs were cultured on the mixed SAMs preadsorbed with albumin. Cell adhesion was effectively prohibited on hydrophobic SAMs pretreated with albumin. Albumin strongly adsorbed and resisted replacement by cell adhesive proteins on hydrophobic SAMs. On the other hand, cells adhered to albumin-adsorbed hydrophilic SAMs. Displacement of preadsorbed albumin with cell adhesive proteins effectively occurs on these hydrophilic SAMs. This effect contributes to induce SAMs with moderate wettability to give suitable surfaces for cell adhesion.

Original languageEnglish
Pages (from-to)3074-3082
Number of pages9
JournalBiomaterials
Volume28
Issue number20
DOIs
Publication statusPublished - Jul 1 2007
Externally publishedYes

Fingerprint

Wettability
Cell adhesion
Self assembled monolayers
Cell Adhesion
Functional groups
Adsorption
Wetting
Albumins
Proteins
Human Umbilical Vein Endothelial Cells
HeLa Cells
Adhesives
Water
Endothelial cells
Contact angle
Carboxylic Acids
Hydroxyl Radical
Cell Count
Carboxylic acids

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Cite this

Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. / Arima, Yusuke; Iwata, Hiroo.

In: Biomaterials, Vol. 28, No. 20, 01.07.2007, p. 3074-3082.

Research output: Contribution to journalArticle

@article{bd67a072c069438280772529efaf7e2f,
title = "Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers",
abstract = "Self-assembled monolayers (SAMs) of alkanethiols, which can provide flat and chemically well-defined surfaces, were employed as model surfaces to understand cellular interaction with artificial materials. SAMs presenting a wide range of wettabilities were prepared by mixing two kinds of alkanethiols carrying terminal methyl (CH3), hydroxyl (OH), carboxylic acid (COOH), or amino (NH2) groups. Adhesion behavior of human umbilical vein endothelial cells (HUVECs) and HeLa cells on these mixed SAMs were examined. The number of adhered HUVECs reached a maximum on CH3/OH mixed SAMs with a water contact angle of 40°, while cell adhesion increased with decreasing water contact angle up to 60-70° and then leveled off on CH3/COOH and CH3/NH2 mixed SAMs. Numbers of adhered HeLa cells showed a maximum on CH3/OH and CH3/COOH mixed SAMs with a water contact angle of 50°. These facts suggest that cell adhesion is mainly determined by surface wettability, but is also affected by the surface functional group, its surface density, and the kinds of cells. The effect of exchange of adsorbed proteins on cell adhesion was also examined. HUVECs were cultured on the mixed SAMs preadsorbed with albumin. Cell adhesion was effectively prohibited on hydrophobic SAMs pretreated with albumin. Albumin strongly adsorbed and resisted replacement by cell adhesive proteins on hydrophobic SAMs. On the other hand, cells adhered to albumin-adsorbed hydrophilic SAMs. Displacement of preadsorbed albumin with cell adhesive proteins effectively occurs on these hydrophilic SAMs. This effect contributes to induce SAMs with moderate wettability to give suitable surfaces for cell adhesion.",
author = "Yusuke Arima and Hiroo Iwata",
year = "2007",
month = "7",
day = "1",
doi = "10.1016/j.biomaterials.2007.03.013",
language = "English",
volume = "28",
pages = "3074--3082",
journal = "Biomaterials",
issn = "0142-9612",
publisher = "Elsevier BV",
number = "20",

}

TY - JOUR

T1 - Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers

AU - Arima, Yusuke

AU - Iwata, Hiroo

PY - 2007/7/1

Y1 - 2007/7/1

N2 - Self-assembled monolayers (SAMs) of alkanethiols, which can provide flat and chemically well-defined surfaces, were employed as model surfaces to understand cellular interaction with artificial materials. SAMs presenting a wide range of wettabilities were prepared by mixing two kinds of alkanethiols carrying terminal methyl (CH3), hydroxyl (OH), carboxylic acid (COOH), or amino (NH2) groups. Adhesion behavior of human umbilical vein endothelial cells (HUVECs) and HeLa cells on these mixed SAMs were examined. The number of adhered HUVECs reached a maximum on CH3/OH mixed SAMs with a water contact angle of 40°, while cell adhesion increased with decreasing water contact angle up to 60-70° and then leveled off on CH3/COOH and CH3/NH2 mixed SAMs. Numbers of adhered HeLa cells showed a maximum on CH3/OH and CH3/COOH mixed SAMs with a water contact angle of 50°. These facts suggest that cell adhesion is mainly determined by surface wettability, but is also affected by the surface functional group, its surface density, and the kinds of cells. The effect of exchange of adsorbed proteins on cell adhesion was also examined. HUVECs were cultured on the mixed SAMs preadsorbed with albumin. Cell adhesion was effectively prohibited on hydrophobic SAMs pretreated with albumin. Albumin strongly adsorbed and resisted replacement by cell adhesive proteins on hydrophobic SAMs. On the other hand, cells adhered to albumin-adsorbed hydrophilic SAMs. Displacement of preadsorbed albumin with cell adhesive proteins effectively occurs on these hydrophilic SAMs. This effect contributes to induce SAMs with moderate wettability to give suitable surfaces for cell adhesion.

AB - Self-assembled monolayers (SAMs) of alkanethiols, which can provide flat and chemically well-defined surfaces, were employed as model surfaces to understand cellular interaction with artificial materials. SAMs presenting a wide range of wettabilities were prepared by mixing two kinds of alkanethiols carrying terminal methyl (CH3), hydroxyl (OH), carboxylic acid (COOH), or amino (NH2) groups. Adhesion behavior of human umbilical vein endothelial cells (HUVECs) and HeLa cells on these mixed SAMs were examined. The number of adhered HUVECs reached a maximum on CH3/OH mixed SAMs with a water contact angle of 40°, while cell adhesion increased with decreasing water contact angle up to 60-70° and then leveled off on CH3/COOH and CH3/NH2 mixed SAMs. Numbers of adhered HeLa cells showed a maximum on CH3/OH and CH3/COOH mixed SAMs with a water contact angle of 50°. These facts suggest that cell adhesion is mainly determined by surface wettability, but is also affected by the surface functional group, its surface density, and the kinds of cells. The effect of exchange of adsorbed proteins on cell adhesion was also examined. HUVECs were cultured on the mixed SAMs preadsorbed with albumin. Cell adhesion was effectively prohibited on hydrophobic SAMs pretreated with albumin. Albumin strongly adsorbed and resisted replacement by cell adhesive proteins on hydrophobic SAMs. On the other hand, cells adhered to albumin-adsorbed hydrophilic SAMs. Displacement of preadsorbed albumin with cell adhesive proteins effectively occurs on these hydrophilic SAMs. This effect contributes to induce SAMs with moderate wettability to give suitable surfaces for cell adhesion.

UR - http://www.scopus.com/inward/record.url?scp=34247131744&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247131744&partnerID=8YFLogxK

U2 - 10.1016/j.biomaterials.2007.03.013

DO - 10.1016/j.biomaterials.2007.03.013

M3 - Article

C2 - 17428532

AN - SCOPUS:34247131744

VL - 28

SP - 3074

EP - 3082

JO - Biomaterials

JF - Biomaterials

SN - 0142-9612

IS - 20

ER -