TY - JOUR
T1 - Effective degradation of aqueous bisphenol-A using novel Ag2C2O4/Ag@GNS photocatalyst under visible light
AU - Vadivel, Sethumathavan
AU - Madkour, Metwally
AU - Rajendran, Saravanan
AU - Sengottaiyan, Chinnasamy
N1 - Publisher Copyright:
© 2021 Hydrogen Energy Publications LLC
PY - 2021
Y1 - 2021
N2 - Photocatalytic oxidation of toxic pollutants is a proficient technique to solve the problems associated with the treatment of bisphenol-A which is classified as 1B reprotoxic substance. In this paper, Ag2C2O4/Ag@GNS nanocomposite whereas Ag and graphene nanosheets (GNS) used as the charge carriers, which is combined through peroxymonosulfate (PMS) for the removal of bisphenol-A (BiP-A) for the first time. The XRD, UV-DRS, SEM, and TEM studies were performed to confirm the phase structure and the purity. Ag2C2O4/Ag@GNS nanocomposite exhibited superior photocatalytic performance and removal rate when compared with pure Ag2C2O4 and pure GNS. In Ag2C2O4/Ag@GNS photocatalyst, the deposited Ag on the surface of Ag2C2O4 rods effectively formed a metal and semiconductor heterostructure, thus photogenerated charge carriers were separated easily by the surface plasmon resonance effect (SPR) effect of noble Ag. Hence charge carriers lifetime has been extended to a great extent for the better photocatalytic performance. The experimental results confirmed that the ̊ O2−, ̊ OH, ̊ SO4− radicals were played major role in the photolysis process. Furthermore, the effect of the photocatalyst & PMS concentration, pH and co-existing ions towards the BiP-A degradation were studied in detail. According to the mass spectroscopy studies BiP-A pollutant was effectively deteriorated into smaller molecules and CO2, H2O. Furthermore, we have proposed the possible degradation pathway and photocatalytic mechanism for better understanding.
AB - Photocatalytic oxidation of toxic pollutants is a proficient technique to solve the problems associated with the treatment of bisphenol-A which is classified as 1B reprotoxic substance. In this paper, Ag2C2O4/Ag@GNS nanocomposite whereas Ag and graphene nanosheets (GNS) used as the charge carriers, which is combined through peroxymonosulfate (PMS) for the removal of bisphenol-A (BiP-A) for the first time. The XRD, UV-DRS, SEM, and TEM studies were performed to confirm the phase structure and the purity. Ag2C2O4/Ag@GNS nanocomposite exhibited superior photocatalytic performance and removal rate when compared with pure Ag2C2O4 and pure GNS. In Ag2C2O4/Ag@GNS photocatalyst, the deposited Ag on the surface of Ag2C2O4 rods effectively formed a metal and semiconductor heterostructure, thus photogenerated charge carriers were separated easily by the surface plasmon resonance effect (SPR) effect of noble Ag. Hence charge carriers lifetime has been extended to a great extent for the better photocatalytic performance. The experimental results confirmed that the ̊ O2−, ̊ OH, ̊ SO4− radicals were played major role in the photolysis process. Furthermore, the effect of the photocatalyst & PMS concentration, pH and co-existing ions towards the BiP-A degradation were studied in detail. According to the mass spectroscopy studies BiP-A pollutant was effectively deteriorated into smaller molecules and CO2, H2O. Furthermore, we have proposed the possible degradation pathway and photocatalytic mechanism for better understanding.
UR - http://www.scopus.com/inward/record.url?scp=85116784607&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116784607&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2021.09.118
DO - 10.1016/j.ijhydene.2021.09.118
M3 - Article
AN - SCOPUS:85116784607
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
SN - 0360-3199
ER -