Effective thermal rectification in suspended monolayer graphene

Haidong Wang, Xing Zhang, Hiroshi Takamatsu, Koji Takahashi

Research output: Contribution to journalConference article

Abstract

Thermal rectification is a phenomenon that the heat flow changes by reversing the direction of temperature gradient. This is a fundamental behavior of the thermal rectifiers, which can be used for the active heat flow control, thermally driven computer, efficient energy harvesting, etc. The key challenge is how to increase the thermal rectification ratio, which is defined as the relative change of thermal conductivities in different heat flow directions. Due to the significant size effect and unique heat transfer mechanisms, nanomaterials (such as carbon nanotubes, nanowires, graphene, etc.) are suggested to have high thermal rectification ratio. However, the experiment result showed that the ratio of the single carbon nanotube thermal rectifier was only 7%. In the past decade, many theoretical researches and molecular dynamics simulations have shown that the monolayer graphene may have high thermal rectification ratio due to its unique two-dimensional heat transfer mechanism. But the experimental work is still a blank because of the difficult fabrication process of suspended graphene electronic device. In this work, we report the experimental demonstration of a suspended monolayer graphene thermal rectifier. Three different types of graphene thermal rectifiers have been fabricated with different asymmetric nanostructures. The focused ion beam manufacturing, electron beam induced deposition and precise electron beam lithography were used to design and create asymmetric nanostructures on the monolayer graphene. The thermal rectification ratios were measured by using a precise H-type sensor method. The highest rectification ratio reaches 28% for the graphene with asymmetric nanopores. The asymmetric dependence of thermal conductivity on temperature and space is known to be the physical reason. For the other two kinds of thermal rectifiers, the rectification ratios are about 10%. The asymmetric phonon scattering is known to be the physical reason, which has been proved by using large-scale molecular dynamics simulation.

Original languageEnglish
Pages (from-to)6903-6908
Number of pages6
JournalInternational Heat Transfer Conference
Volume2018-August
Publication statusPublished - Jan 1 2018
Event16th International Heat Transfer Conference, IHTC 2018 - Beijing, China
Duration: Aug 10 2018Aug 15 2018

Fingerprint

Graphite
rectification
Graphene
Monolayers
graphene
rectifiers
heat transmission
Heat transfer
Carbon Nanotubes
thermal conductivity
heat transfer
carbon nanotubes
electron beams
molecular dynamics
Molecular dynamics
Nanostructures
Carbon nanotubes
Thermal conductivity
reversing
blanks

All Science Journal Classification (ASJC) codes

  • Fluid Flow and Transfer Processes
  • Condensed Matter Physics
  • Mechanical Engineering

Cite this

Effective thermal rectification in suspended monolayer graphene. / Wang, Haidong; Zhang, Xing; Takamatsu, Hiroshi; Takahashi, Koji.

In: International Heat Transfer Conference, Vol. 2018-August, 01.01.2018, p. 6903-6908.

Research output: Contribution to journalConference article

@article{1e1d43f749864a2da494d3376b2fda52,
title = "Effective thermal rectification in suspended monolayer graphene",
abstract = "Thermal rectification is a phenomenon that the heat flow changes by reversing the direction of temperature gradient. This is a fundamental behavior of the thermal rectifiers, which can be used for the active heat flow control, thermally driven computer, efficient energy harvesting, etc. The key challenge is how to increase the thermal rectification ratio, which is defined as the relative change of thermal conductivities in different heat flow directions. Due to the significant size effect and unique heat transfer mechanisms, nanomaterials (such as carbon nanotubes, nanowires, graphene, etc.) are suggested to have high thermal rectification ratio. However, the experiment result showed that the ratio of the single carbon nanotube thermal rectifier was only 7{\%}. In the past decade, many theoretical researches and molecular dynamics simulations have shown that the monolayer graphene may have high thermal rectification ratio due to its unique two-dimensional heat transfer mechanism. But the experimental work is still a blank because of the difficult fabrication process of suspended graphene electronic device. In this work, we report the experimental demonstration of a suspended monolayer graphene thermal rectifier. Three different types of graphene thermal rectifiers have been fabricated with different asymmetric nanostructures. The focused ion beam manufacturing, electron beam induced deposition and precise electron beam lithography were used to design and create asymmetric nanostructures on the monolayer graphene. The thermal rectification ratios were measured by using a precise H-type sensor method. The highest rectification ratio reaches 28{\%} for the graphene with asymmetric nanopores. The asymmetric dependence of thermal conductivity on temperature and space is known to be the physical reason. For the other two kinds of thermal rectifiers, the rectification ratios are about 10{\%}. The asymmetric phonon scattering is known to be the physical reason, which has been proved by using large-scale molecular dynamics simulation.",
author = "Haidong Wang and Xing Zhang and Hiroshi Takamatsu and Koji Takahashi",
year = "2018",
month = "1",
day = "1",
language = "English",
volume = "2018-August",
pages = "6903--6908",
journal = "International Heat Transfer Conference",
issn = "2377-424X",

}

TY - JOUR

T1 - Effective thermal rectification in suspended monolayer graphene

AU - Wang, Haidong

AU - Zhang, Xing

AU - Takamatsu, Hiroshi

AU - Takahashi, Koji

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Thermal rectification is a phenomenon that the heat flow changes by reversing the direction of temperature gradient. This is a fundamental behavior of the thermal rectifiers, which can be used for the active heat flow control, thermally driven computer, efficient energy harvesting, etc. The key challenge is how to increase the thermal rectification ratio, which is defined as the relative change of thermal conductivities in different heat flow directions. Due to the significant size effect and unique heat transfer mechanisms, nanomaterials (such as carbon nanotubes, nanowires, graphene, etc.) are suggested to have high thermal rectification ratio. However, the experiment result showed that the ratio of the single carbon nanotube thermal rectifier was only 7%. In the past decade, many theoretical researches and molecular dynamics simulations have shown that the monolayer graphene may have high thermal rectification ratio due to its unique two-dimensional heat transfer mechanism. But the experimental work is still a blank because of the difficult fabrication process of suspended graphene electronic device. In this work, we report the experimental demonstration of a suspended monolayer graphene thermal rectifier. Three different types of graphene thermal rectifiers have been fabricated with different asymmetric nanostructures. The focused ion beam manufacturing, electron beam induced deposition and precise electron beam lithography were used to design and create asymmetric nanostructures on the monolayer graphene. The thermal rectification ratios were measured by using a precise H-type sensor method. The highest rectification ratio reaches 28% for the graphene with asymmetric nanopores. The asymmetric dependence of thermal conductivity on temperature and space is known to be the physical reason. For the other two kinds of thermal rectifiers, the rectification ratios are about 10%. The asymmetric phonon scattering is known to be the physical reason, which has been proved by using large-scale molecular dynamics simulation.

AB - Thermal rectification is a phenomenon that the heat flow changes by reversing the direction of temperature gradient. This is a fundamental behavior of the thermal rectifiers, which can be used for the active heat flow control, thermally driven computer, efficient energy harvesting, etc. The key challenge is how to increase the thermal rectification ratio, which is defined as the relative change of thermal conductivities in different heat flow directions. Due to the significant size effect and unique heat transfer mechanisms, nanomaterials (such as carbon nanotubes, nanowires, graphene, etc.) are suggested to have high thermal rectification ratio. However, the experiment result showed that the ratio of the single carbon nanotube thermal rectifier was only 7%. In the past decade, many theoretical researches and molecular dynamics simulations have shown that the monolayer graphene may have high thermal rectification ratio due to its unique two-dimensional heat transfer mechanism. But the experimental work is still a blank because of the difficult fabrication process of suspended graphene electronic device. In this work, we report the experimental demonstration of a suspended monolayer graphene thermal rectifier. Three different types of graphene thermal rectifiers have been fabricated with different asymmetric nanostructures. The focused ion beam manufacturing, electron beam induced deposition and precise electron beam lithography were used to design and create asymmetric nanostructures on the monolayer graphene. The thermal rectification ratios were measured by using a precise H-type sensor method. The highest rectification ratio reaches 28% for the graphene with asymmetric nanopores. The asymmetric dependence of thermal conductivity on temperature and space is known to be the physical reason. For the other two kinds of thermal rectifiers, the rectification ratios are about 10%. The asymmetric phonon scattering is known to be the physical reason, which has been proved by using large-scale molecular dynamics simulation.

UR - http://www.scopus.com/inward/record.url?scp=85068330273&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068330273&partnerID=8YFLogxK

M3 - Conference article

AN - SCOPUS:85068330273

VL - 2018-August

SP - 6903

EP - 6908

JO - International Heat Transfer Conference

JF - International Heat Transfer Conference

SN - 2377-424X

ER -