TY - JOUR
T1 - Effects of ACE inhibition on left ventricular failure and oxidative stress in dahl salt-sensitive rats
AU - Tsutsui, Hiroyuki
AU - Ide, Tomomi
AU - Hayashidani, Shunji
AU - Kinugawa, Shintaro
AU - Suematsu, Nobuhiro
AU - Utsumi, Hideo
AU - Takeshita, Akira
PY - 2001
Y1 - 2001
N2 - Dahl salt-sensitive (DS) rats fed high-salt diet exert compensated left ventricular (LV) hypertrophy and eventually develop heart failure. Oxidative stress has been shown to be involved in myocardial remodeling and failure and thus might play an important role in this transition from hypertrophy to failure. We measured the amount of reactive oxygen species (ROS) in the myocardium from DS rats by using electron spin resonance spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (hydroxy-TEMPO) and also examined the effects of chronic angiotensin-converting enzyme (ACE) inhibition on the transition. We divided DS rats (5 weeks old, 150-200 g) into three groups: low-salt (0.3% NaCl) diet for 10 weeks (LS group), high-salt (8% NaCl) diet for 10 weeks (HS-10+V group), and high-salt diet and cilazapril (10 mg/kg body weight per day) started after 5 weeks of high-salt diet and maintained for 5 weeks (HS-10+Cil group). Systolic blood pressure (mm Hg) was significantly elevated in the HS-10+V (229 ± 5) and HS-10+Cil (209 ± 5) groups compared with the LS group (141 ± 2). The amount of myocardial ROS was not changed after 5 weeks of high-salt diet, but significantly increased in HS-10+V rats compared with LS rats, and was abolished in the HS-10+Cil group. HS-10+V rats exerted the clinical signs of heart failure, including increased lung weight and pleural effusion, associated with LV hypertrophy and LV cavity dilatation. In the HS-10+Cil group, signs of heart failure were significantly attenuated despite only a modest reduction in systolic blood pressure (-20 mm Hg). The progression of LV failure after hypertrophy in high-salt-loaded DS hypertensive rats was associated with increased myocardial ROS, and ACE inhibitor could prevent this transition from compensated hypertrophy to failure.
AB - Dahl salt-sensitive (DS) rats fed high-salt diet exert compensated left ventricular (LV) hypertrophy and eventually develop heart failure. Oxidative stress has been shown to be involved in myocardial remodeling and failure and thus might play an important role in this transition from hypertrophy to failure. We measured the amount of reactive oxygen species (ROS) in the myocardium from DS rats by using electron spin resonance spectroscopy with 4-hydroxy-2,2,6,6-tetramethyl-piperidine-N-oxyl (hydroxy-TEMPO) and also examined the effects of chronic angiotensin-converting enzyme (ACE) inhibition on the transition. We divided DS rats (5 weeks old, 150-200 g) into three groups: low-salt (0.3% NaCl) diet for 10 weeks (LS group), high-salt (8% NaCl) diet for 10 weeks (HS-10+V group), and high-salt diet and cilazapril (10 mg/kg body weight per day) started after 5 weeks of high-salt diet and maintained for 5 weeks (HS-10+Cil group). Systolic blood pressure (mm Hg) was significantly elevated in the HS-10+V (229 ± 5) and HS-10+Cil (209 ± 5) groups compared with the LS group (141 ± 2). The amount of myocardial ROS was not changed after 5 weeks of high-salt diet, but significantly increased in HS-10+V rats compared with LS rats, and was abolished in the HS-10+Cil group. HS-10+V rats exerted the clinical signs of heart failure, including increased lung weight and pleural effusion, associated with LV hypertrophy and LV cavity dilatation. In the HS-10+Cil group, signs of heart failure were significantly attenuated despite only a modest reduction in systolic blood pressure (-20 mm Hg). The progression of LV failure after hypertrophy in high-salt-loaded DS hypertensive rats was associated with increased myocardial ROS, and ACE inhibitor could prevent this transition from compensated hypertrophy to failure.
UR - http://www.scopus.com/inward/record.url?scp=0034997368&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034997368&partnerID=8YFLogxK
U2 - 10.1097/00005344-200106000-00010
DO - 10.1097/00005344-200106000-00010
M3 - Article
C2 - 11392469
AN - SCOPUS:0034997368
VL - 37
SP - 725
EP - 733
JO - Journal of Cardiovascular Pharmacology
JF - Journal of Cardiovascular Pharmacology
SN - 0160-2446
IS - 6
ER -