Effects of ash amount and molten ash's behavior on initial Fe-C liquid formation temperature due to iron carburization reaction

Ko Ichiro Ohno, Shohei Tsurumaru, Alexander Babich, Takayuki Maeda, Dieter Senk, Heinrich Willhelm Gudenau, Kazuya Kunitomo

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    In the current trend, a low carbon operation of blast furnace is going to make liquid permeability severe condition due to thinning of coke layer around cohesive zone. An iron carburization reaction is one of the most important reactions at the cohesive zone, because an enhancement of the reaction has a positive possibility to improve a metal dripping behavior from cohesive zone. Although it is thought ash of carbonaceous material has a negative effect on the reaction, there is not enough correctly focused knowledge on behavior of the ash in iron carburization reaction. In this study, several kinds of carbonaceous material samples with ash remove treatment by acid solution were prepared. The carbonaceous material samples were applied for "in-situ" observation of molten iron formation behavior due to iron carburization reaction under a constant heating rate condition with inert gas atmosphere. It was found that the acid treatment decreased not only amount of the ash in the carbon samples but also Na concentration of the ash. Decreasing of ash content in carbonaceous material decreased initial Fe-C liquid formation temperature because obstruction on reaction area of iron carburization reaction was decreased. Decreasing of Na content in ash caused changing of molten ash's properties, increasing of melting temperature and decreasing of wettability to iron and carbon. In case of without the acid treatment, it was thought molten ash could behave as a barrier at a reaction interface of iron carburization due to good wettability from lower temperature than initial Fe-C liquid formation temperature.

    Original languageEnglish
    Pages (from-to)677-683
    Number of pages7
    JournalTetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan
    Volume102
    Issue number12
    DOIs
    Publication statusPublished - 2016

    All Science Journal Classification (ASJC) codes

    • Condensed Matter Physics
    • Physical and Theoretical Chemistry
    • Metals and Alloys
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Effects of ash amount and molten ash's behavior on initial Fe-C liquid formation temperature due to iron carburization reaction'. Together they form a unique fingerprint.

    Cite this