Effects of crystal rotation rate on the melt-crystal interface of a CZ-Si crystal growth in a transverse magnetic field

Lijun Liu, Koichi Kakimoto

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

A series of computations were carried out to study the effect of crystal rotation rate on the melt-crystal interface shape and temperature gradient at the interface during CZ-Si crystal growth in a transverse magnetic field (TMCZ). A three-dimensional (3D) global model was used in this study. It was found that the interface deflection changes from non-uniformity in the azimuthal direction to an axisymmetric distribution with increasing crystal rotation rate. The mechanism of this effect is mainly attributed to the spatial fluctuations of local growth rate, which is derived as a function of crystal rotation rate and non-uniformity of interface deflection in the azimuthal direction. It contributes to the formation of the shape of the melt-crystal interface through the heat release of solidification at the melt-crystal interface. Even though the melt-crystal interface shape is nearly axisymmetric at a high crystal rotation rate, local growth rate fluctuations are still noticeable and play an important role in the characteristics of heat transfer and impurity segregation at the melt-crystal interface.

Original languageEnglish
Pages (from-to)306-312
Number of pages7
JournalJournal of Crystal Growth
Volume310
Issue number2
DOIs
Publication statusPublished - Jan 15 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Effects of crystal rotation rate on the melt-crystal interface of a CZ-Si crystal growth in a transverse magnetic field'. Together they form a unique fingerprint.

Cite this