Effects of different materials used for internal floating electrode on the photovoltaic properties of tandem type organic solar cell

Kuwat Triyana, Takeshi Yasuda, Katsuhiko Fujita, Tetsuo Tsutsui

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Three thin heterojunctions sandwiched between indium tin oxide (ITO) and the top electrode as triple-heterojunction organic solar cells have been fabricated. Each heterojunction cell consists of CuPc as a donor layer and perilene tetracrboxylic-bis-benzimidazole (PTCBI) as an acceptor layer. Ultra thin (1 nm average thickness) layers of Ag or Au have been inserted between two heterojunctions as an internal electrode. Ag and Au were chosen as materials both for internal floating and top electrodes. Influences of different deposition sequences of the organic layer in each heterojunction cell and different electrode materials were also investigated. The optimum devices were obtained when the same material was used both as an internal electrode and a top electrode, When the deposition sequence of the heterojunction is PTCBI/CuPc, the most suitable electrode is Au and the ITO is negative relative to the top electrode. Meanwhile, Ag is suitable for an electrode when the deposition sequence is CuPc/PTCBI. In this second deposition sequence, the ITO is positive relative to the top electrode. The open circuit voltage (Voc) of both optimum devices is on the order of 1.35-1.5 V. These values are approximately three times higher than that in single-heterojunction organic solar cells.

Original languageEnglish
Pages (from-to)2352-2356
Number of pages5
JournalJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
Volume43
Issue number4 B
DOIs
Publication statusPublished - Apr 2004

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Effects of different materials used for internal floating electrode on the photovoltaic properties of tandem type organic solar cell'. Together they form a unique fingerprint.

  • Cite this