Effects of external and internal hydrogen on tensile properties of austenitic stainless steels containing additive elements

Hisatake Itoga, Hisao Matsunaga, Junichiro Yamabe, Saburo Matsuoka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Effect of hydrogen on the slow strain rate tensile (SSRT) properties of five types of austenitic stainless steels, which contain small amounts of additive elements (e.g., nitrogen, niobium, vanadium and titanium), was studied. Some specimens were charged by exposing them to 100 MPa hydrogen gas at 543 K for 200 hours. The SSRT tests were carried out under various combinations of specimens and test atmospheres as follows: (i) non-charged specimens tested in air at room temperature (RT), (ii) non-charged specimens tested in 0.1 MPa nitrogen gas at 193 K, (iii) hydrogen-charged specimens tested in air at RT, (iv) hydrogen-charged specimens tested in 0.1 MPa nitrogen gas at 193 K, and (v) non-charged specimens tested in 115 MPa hydrogen gas at RT. In the tests without hydrogen (i.e., cases (i) and (ii)), the reduction of area (RA) was nearly constant in all the materials, regardless of test temperature. In contrast, in the tests of internal hydrogen (cases (iii) and (iv)), RA was much smaller at 193 K than at RT in all the materials. It was revealed that the susceptibility of the materials to hydrogen embrittlement (HE) can successfully be estimated in terms of the nickel equivalent, which represents the stability of austenite phase. The result suggested that the nickel equivalent can be used for evaluating the material compatibility of austenitic stainless steels for hydrogen service.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857007, 9780791857007, 9780791857007, 9780791857007
DOIs
Publication statusPublished - Jan 1 2015
EventASME 2015 Pressure Vessels and Piping Conference, PVP 2015 - Boston, United States
Duration: Jul 19 2015Jul 23 2015

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2015
ISSN (Print)0277-027X

Other

OtherASME 2015 Pressure Vessels and Piping Conference, PVP 2015
Country/TerritoryUnited States
CityBoston
Period7/19/157/23/15

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effects of external and internal hydrogen on tensile properties of austenitic stainless steels containing additive elements'. Together they form a unique fingerprint.

Cite this