Effects of hydrogen concentration on stoichiometric H2/CH 4/air premixed turbulent flames

Ekenechukwu C. Okafor, Yukihide Nagano, Toshiaki Kitagawa

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)


Outwardly propagating stoichiometric flames of H2/CH 4/air were studied in a constant volume fan-stirred combustion chamber in order to investigate the effects of hydrogen concentration on the turbulent burning velocities. The experiments were conducted at mixture temperature of 350 K and mixture pressure of 0.10 MPa. The mole fraction of hydrogen in the binary fuel was varied from 0 to 1.0 for turbulence intensities equal to 1.23, 1.64 and 2.46 m/s. Laminar flames of the mixtures were first investigated to obtain the unstretched laminar burning velocities and the associated Markstein numbers. The unstretched laminar burning velocity increased non-linearly with increase in hydrogen fraction. The Markstein number and the effective Lewis number of the mixtures varied non-monotonically with hydrogen mole fraction. The Markstein number was used to investigate the influence of thermo-diffusive effects on the turbulent burning velocity. The turbulent burning velocity increased with increase in hydrogen mole fraction at constant turbulence intensity. This was primarily because of the increase in the unstretched laminar burning velocity with increase in hydrogen mole fraction. However, due to decrease in the relative effect of turbulence on the flame, the ratio of turbulent burning velocity to the unstretched laminar burning velocity decreased with increase in hydrogen mole fraction for fixed turbulence intensities.

Original languageEnglish
JournalSAE Technical Papers
Publication statusPublished - Jan 1 2013
EventSAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013 - Seoul, Korea, Republic of
Duration: Oct 21 2013Oct 23 2013

All Science Journal Classification (ASJC) codes

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Effects of hydrogen concentration on stoichiometric H<sub>2</sub>/CH <sub>4</sub>/air premixed turbulent flames'. Together they form a unique fingerprint.

Cite this