Effects of load and gradient on energy cost of running

Daijiro Abe, Yoshiyuki Fukuoka, Satoshi Muraki, Akira Yasukouchi, Yasushi Sakaguchi, Shigemitsu Niihata

    Research output: Contribution to journalArticlepeer-review

    32 Citations (Scopus)

    Abstract

    This study quantified the interaction of electromyography (EMG) obtained from the vastus lateralis and metabolic energy cost of running (Cr; mL· [mass+load]-1· meter-1), an index of running economy, during submaximal treadmill running. Experiments were conducted with and without load on the back on a motor-driven treadmill on the downhill, level and uphill slopes. The obtained EMG was full-wave rectified and integrated (iEMG). The iEMG was divided into eccentric (ECC) and concentric (CON) phases with a foot sensor and a knee-joint goniometer. The ratio of ECC to CON (ECC/CON ratio) was regarded as the muscle elastic capacity during running on each slope. The Cr was determined as the ratio of the 2-min steady-state V̇ O2 to the running speed. We found a significant decrease in the Cr when carrying the load at all slopes. The ECC/CON ratio was significantly higher in the load condition at the downhill and level slopes, but not at the uphill slope. A significant gradient difference was observed in the Cr (down<level<up) and ECC/CON ratio (down=level>uphill). Thus, an alteration of Cr by the gradient and load was almost consistent with that of the ECC/CON ratio. The ECC/CON ratio, but not the rotative torque (T) functioning around the center of body mass, significantly correlated with Cr (r=-0.41, p<0.05). These results indicated that the ECC/CON ratio, rather than T, contributed to one of the energy-saving mechanisms during running with load.

    Original languageEnglish
    Pages (from-to)153-160
    Number of pages8
    JournalJournal of physiological anthropology
    Volume30
    Issue number4
    DOIs
    Publication statusPublished - 2011

    All Science Journal Classification (ASJC) codes

    • Human Factors and Ergonomics
    • Physiology
    • Orthopedics and Sports Medicine
    • Anthropology
    • Public Health, Environmental and Occupational Health
    • Physiology (medical)

    Fingerprint

    Dive into the research topics of 'Effects of load and gradient on energy cost of running'. Together they form a unique fingerprint.

    Cite this