Effects of load and gradient on energy cost of running

Daijiro Abe, Yoshiyuki Fukuoka, Satoshi Muraki, Akira Yasukouchi, Yasushi Sakaguchi, Shigemitsu Niihata

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


This study quantified the interaction of electromyography (EMG) obtained from the vastus lateralis and metabolic energy cost of running (Cr; mL· [mass+load]-1· meter-1), an index of running economy, during submaximal treadmill running. Experiments were conducted with and without load on the back on a motor-driven treadmill on the downhill, level and uphill slopes. The obtained EMG was full-wave rectified and integrated (iEMG). The iEMG was divided into eccentric (ECC) and concentric (CON) phases with a foot sensor and a knee-joint goniometer. The ratio of ECC to CON (ECC/CON ratio) was regarded as the muscle elastic capacity during running on each slope. The Cr was determined as the ratio of the 2-min steady-state V̇ O2 to the running speed. We found a significant decrease in the Cr when carrying the load at all slopes. The ECC/CON ratio was significantly higher in the load condition at the downhill and level slopes, but not at the uphill slope. A significant gradient difference was observed in the Cr (down<level<up) and ECC/CON ratio (down=level>uphill). Thus, an alteration of Cr by the gradient and load was almost consistent with that of the ECC/CON ratio. The ECC/CON ratio, but not the rotative torque (T) functioning around the center of body mass, significantly correlated with Cr (r=-0.41, p<0.05). These results indicated that the ECC/CON ratio, rather than T, contributed to one of the energy-saving mechanisms during running with load.

Original languageEnglish
Pages (from-to)153-160
Number of pages8
JournalJournal of physiological anthropology
Issue number4
Publication statusPublished - 2011

All Science Journal Classification (ASJC) codes

  • Human Factors and Ergonomics
  • Physiology
  • Orthopedics and Sports Medicine
  • Anthropology
  • Public Health, Environmental and Occupational Health
  • Physiology (medical)


Dive into the research topics of 'Effects of load and gradient on energy cost of running'. Together they form a unique fingerprint.

Cite this