Effects of preparation condition on the photocatalytic activity of porphyrin-modified GaN:ZnO for water splitting

Hidehisa Hagiwara, Ryota Kakigi, Shuhei Takechi, Motonori Watanabe, Satoshi Hinokuma, Shintaro Ida, Tatsumi Ishihara

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    Effects of nitridation condition on gallium-zinc oxynitride solid solution (GaN:ZnO) was investigated to optimize the composition of GaN:ZnO for dye-modified photocatalysts. Gallium nitride (GaN) formed from Ga2O3 at 973 K, and GaN:ZnO was obtained over 1073 K under NH3 gas flow. Nitrogen content in GaN:ZnO increased with increasing nitridation temperature and time, while zinc content decreased because of evaporation. Although UV–vis absorption spectra of GaN:ZnO powders were not significantly changed in different compositions, the water splitting activities of the dye-modified GaN:ZnO photocatalysts depended on the composition of GaN:ZnO. The highest formation rates of H2 and O2 were achieved by the GaN:ZnO containing 15% of zinc and 73% of nitrogen. Finally, the nitridation condition was optimized at 1123 K 15 h under NH3 gas flow (200 ml/min) for preparation of the dye-modified GaN:ZnO powder as water splitting photocatalyst.

    Original languageEnglish
    Pages (from-to)601-606
    Number of pages6
    JournalSurface and Coatings Technology
    Volume324
    DOIs
    Publication statusPublished - Sep 15 2017

    All Science Journal Classification (ASJC) codes

    • Chemistry(all)
    • Condensed Matter Physics
    • Surfaces and Interfaces
    • Surfaces, Coatings and Films
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Effects of preparation condition on the photocatalytic activity of porphyrin-modified GaN:ZnO for water splitting'. Together they form a unique fingerprint.

    Cite this