Effects of sclerotic changes on stress concentration in early-stage osteonecrosis: A patient-specific, 3D finite element analysis

Takeshi Utsunomiya, Goro Motomura, Satoshi Ikemura, Yusuke Kubo, Kazuhiko Sonoda, Hiroyuki Hatanaka, Shoji Baba, Koichiro Kawano, Takuaki Yamamoto, Yasuharu Nakashima

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Stress distribution remains unclear in early-stage osteonecrosis of the femoral head (ONFH). To clarify this issue, we generated patient-specific finite element models (FEMs) from 51 patients with ONFH. Patients’ hips were classified into three groups: ONFH without a sclerotic boundary (Stage 1, n = 6), ONFH with a sclerotic boundary (Stage 2, n = 10), and ONFH with both a sclerotic boundary and <2 mm collapse (Stage 3, n = 35). Four hips without ONFH were used as controls. Stress distribution in each FEM was compared with magnetic resonance imaging (MRI) and computed tomography (CT) results. Fifteen wholly resected femoral heads in Stage 3 hips were assessed by micro-CT. Furthermore, we histologically examined three Stage 2 femoral heads that subsequently developed subchondral fractures after FEM analyses. In all FEMs of both control and Stage 1 hip, stress was equally distributed on the femoral head surface. However, in all FEMs of both Stages 2 and 3 hips, stress was concentrated at the lateral boundary of the femoral head surface, corresponding to both a low-intensity band on T1-weighted MRI images and sclerotic changes on CT. On micro-CT, subchondral fractures consistently began at the lateral boundary with sclerotic changes, in which bone volume fraction was increased. Histology showed breakage of subchondral plates at the junction between necrotic and reparative zones. In early-stage ONFH, sclerotic changes caused stress concentration, which can trigger subchondral fractures at the lateral boundary. Clinical Significance: Our results will clarify the pathogenic mechanism of collapse in ONFH.

Original languageEnglish
Pages (from-to)3169-3177
Number of pages9
JournalJournal of Orthopaedic Research
Volume36
Issue number12
DOIs
Publication statusPublished - Dec 2018

All Science Journal Classification (ASJC) codes

  • Orthopedics and Sports Medicine

Fingerprint Dive into the research topics of 'Effects of sclerotic changes on stress concentration in early-stage osteonecrosis: A patient-specific, 3D finite element analysis'. Together they form a unique fingerprint.

Cite this