Effects of transition metal addition on sintering and electrical conductivity of La-doped CeO2 as buffer layer for doped LaGaO 3 electrolyte film

Jong Eun Hong, Shintaro Ida, Tatsumi Ishihara

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    Effects of transition metal additives (0.5 at.% Fe, Mn, and Co) on densification, microstructure, crystal structure, and electrical conductivity of Ce0.6La0.4O2 (LDC) were investigated. The power generation property of a single cell using LDC with the transition metal addition as buffer layer was measured. The addition of Co decreased the sintering temperature of LDC to 1373 K and increased the grain size when the sintering was performed at 1623 K. No impurity phase appeared by the addition of transition metals. The total conductivity of the Co-LDC sample sintered at 1373 K was even higher than that of LDC sintered at 1623 K, and Co-LDC sintered at 1623 K exhibited a conductivity of around 0.01 S cm- 1 at 973 K for the high density and large grain size. The single cell using an LSGM electrolyte film and Co-LDC buffer layers showed an open circuit voltage (~ 1.1 V) close to the theoretical value and the maximum power density of 974, 353, and 84 mW cm- 2 at 973, 873, and 773 K, respectively. Thus, Co-LDC is a promising buffer layer for enhanced sintering density and decreasing the ohmic resistance in anode supported SOFCs using LSGM electrolyte films.

    Original languageEnglish
    Pages (from-to)374-377
    Number of pages4
    JournalSolid State Ionics
    Volume262
    DOIs
    Publication statusPublished - Sep 1 2014

    All Science Journal Classification (ASJC) codes

    • Chemistry(all)
    • Materials Science(all)
    • Condensed Matter Physics

    Fingerprint

    Dive into the research topics of 'Effects of transition metal addition on sintering and electrical conductivity of La-doped CeO<sub>2</sub> as buffer layer for doped LaGaO <sub>3</sub> electrolyte film'. Together they form a unique fingerprint.

    Cite this