Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions

Shuzo Hirata, Kenro Totani, Junxiang Zhang, Takashi Yamashita, Hironori Kaji, Seth R. Marder, Toshiyuki Watanabe, Chihaya Adachi

Research output: Contribution to journalArticlepeer-review

318 Citations (Scopus)


Persistent emission with a long lifetime (>1 s) from organic materials can only be observed at a low temperature, because of the significant nonradiative deactivation pathway that occurs at room-temperature (RT). If organic materials with persistent RT emission in air could be developed, they could potentially be utilized for a variety of applications. Here, organic host-guest materials with efficient persistent RT phosphorescence (RTP) are developed by minimizing the nonradiative deactivation pathway of triplet excitons. The nonradiative deactivation pathway is dependent on both nonradiative deactivation of the guest and quenching by diffusional motion of the host. The rigidity and oxygen barrier properties of the steroidal compound used as the host suppressed the quenching, and the aromatic hydrocarbon used as the guest is highly deuterated to minimize nonradiative deactivation of the guest. Red-green-blue persistent RTP with a lifetime >1 s and a quantum yield >10% in air is realized for a pure organic material.

Original languageEnglish
Pages (from-to)3386-3397
Number of pages12
JournalAdvanced Functional Materials
Issue number27
Publication statusPublished - Jul 19 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrochemistry

Fingerprint Dive into the research topics of 'Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions'. Together they form a unique fingerprint.

Cite this