Electric field-induced alignment of thermal conductive filler in acrylic polymer for enhanced thermal conductivity

I. Myojo, M. Nakano, J. Suehiro, T. Iwaya, Y. Ishida

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A recent trend in the integration of electric power devices has caused problems of heat management because of high heat generation from the device. Therefore, studies of new materials having high thermal conductivity have been motivated. Polymer-based composites have been paid attention because of its flexibility and energy-saving productivity. In this study, nitride fillers, which have excellent thermal conductivity and electric insulating property, were used as a component of the polymer-based composites. To achieve high thermal diffusion with a small fraction of the fillers, the fillers were aligned by an electric field. Aluminum nitride (AlN) or boron nitride (BN) particles were dispersed in an acrylic polymer. An array of wire electrodes was used to form widely spread electric field. In-plane and through-plane alignment were carried out with varying arrangements of the electrode arrays. Thermal diffusivity in-plane direction of the AlN and BN composites increased about 1.2- and 1.7-fold by aligning the fillers as comparing with those without the alignment, respectively. To align the filler in through-plane detection, several kinds of the electrode arrangements were examined. As the best result, the through-plane thermal diffusivity of the aligned AlN composites became 30-fold compared to that without the alignment.

Original languageEnglish
Title of host publicationECCM 2018 - 18th European Conference on Composite Materials
PublisherApplied Mechanics Laboratory
ISBN (Electronic)9781510896932
Publication statusPublished - 2020
Event18th European Conference on Composite Materials, ECCM 2018 - Athens, Greece
Duration: Jun 24 2018Jun 28 2018

Publication series

NameECCM 2018 - 18th European Conference on Composite Materials

Conference

Conference18th European Conference on Composite Materials, ECCM 2018
Country/TerritoryGreece
CityAthens
Period6/24/186/28/18

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Electric field-induced alignment of thermal conductive filler in acrylic polymer for enhanced thermal conductivity'. Together they form a unique fingerprint.

Cite this