Electrical and oxidation resistance of surface oxide of porous Fe-Cr-Al alloy for the application of metal supported SOFCs

H. C. Pham, S. Taniguchi, Y. Inoue, J. T. Chou, T. Izumi, K. Matsuoka, K. Sasaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We have investigated the property of Fe-Cr-Al-type stainless steel as a porous alloy substrate for metal-supported SOFCs especially on the cathode side. We confirmed not only good heat resistance but also low electrical resistance at the interface between the porous substrate and a La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) coating at 700°C in air. Long-term durability of the oxidation resistance of the LSCF-coated Fe-Cr-Al alloy at 700°C was investigated by measuring the mass gain, surface oxide thickness, and electrical resistance at different temperatures from 700 to 900°C.

Original languageEnglish
Title of host publicationSolid Oxide Fuel Cells 14, SOFC 2015
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society Inc.
Pages1715-1720
Number of pages6
Edition1
ISBN (Electronic)9781607685395
DOIs
Publication statusPublished - Jan 1 2015
Event14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015; held as part of the Electrochemical Society, ECS Conference on Electrochemical Energy Conversion and Storage - Glasgow, United Kingdom
Duration: Jul 26 2015Jul 31 2015

Publication series

NameECS Transactions
Number1
Volume68
ISSN (Print)1938-5862
ISSN (Electronic)1938-6737

Other

Other14th International Symposium on Solid Oxide Fuel Cells, SOFC 2015; held as part of the Electrochemical Society, ECS Conference on Electrochemical Energy Conversion and Storage
CountryUnited Kingdom
CityGlasgow
Period7/26/157/31/15

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Electrical and oxidation resistance of surface oxide of porous Fe-Cr-Al alloy for the application of metal supported SOFCs'. Together they form a unique fingerprint.

Cite this