Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage

Sanetaka Shirahata, Shigeru Kabayama, Mariko Nakano, Takumi Miura, Kenichi Kusumoto, Miho Gotoh, Hidemitsu Hayashi, Kazumichi Otsubo, Shinkatsu Morisawa, Yoshinori Katakura

Research output: Contribution to journalArticle

149 Citations (Scopus)

Abstract

Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. The ideal scavenger for active oxygen should be 'active hydrogen'. 'Active hydrogen' can be produced in reduced water near the cathode during electrolysis of water. Reduced water exhibits high pH, low dissolved oxygen (DO), extremely high dissolved molecular hydrogen (DH), and extremely negative redox potential (RP) values. Strongly electrolyzed-reduced water, as well as ascorbic acid, (+)-catechin and tannic acid, completely scavenged O 2 ̇ - produced by the hypoxanthine-xanthine oxidase (HX-XOD) system in sodium phosphate buffer (pH 7.0). The superoxide dismutase (SOD)-like activity of reduced water is stable at 4°C for over a month and was not lost even after neutralization, repeated freezing and melting, deflation with sonication, vigorous mixing, boiling, repeated filtration, or closed autoclaving, but was lost by opened autoclaving or by closed autoclaving in the presence of tungsten trioxide which efficiently adsorbs active atomic hydrogen. Water bubbled with hydrogen gas exhibited low DO, extremely high DH and extremely low RP values, as does reduced water, but it has no SOD-like activity. These results suggest that the SOD-like activity of reduced water is not due to the dissolved molecular hydrogen but due to the dissolved atomic hydrogen (active hydrogen). Although SOD accumulated H 2 O 2 when added to the HX-XOD system, reduced water decreased the amount of H 2 O 2 produced by XOD. Reduced water, as well as catalase ascorbic acid, could directly scavenge H 2 O 2 . Reduced water suppresses single-strand breakage of DNA by active oxygen species produced by the Cu(II)-catalyzed oxidation of ascorbic acid in a dose-dependent manner, suggesting that reduced water can scavenge not only O 2 ̇ - and H 2 O 2 , but also 1 O 2 and . OH.

Original languageEnglish
Pages (from-to)269-274
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume234
Issue number1
DOIs
Publication statusPublished - May 8 1997

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage'. Together they form a unique fingerprint.

  • Cite this

    Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., Otsubo, K., Morisawa, S., & Katakura, Y. (1997). Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochemical and Biophysical Research Communications, 234(1), 269-274. https://doi.org/10.1006/bbrc.1997.6622