Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data

Atlas Collaboration

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with ET= 15 GeV and 99% at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.

Original languageEnglish
Article number195
JournalEuropean Physical Journal C
Volume77
Issue number3
DOIs
Publication statusPublished - Mar 1 2017

Fingerprint

Colliding beam accelerators
Detectors
collisions
Electrons
detectors
electrons
Hadrons
transverse momentum
hadrons
rejection
Luminance
Momentum
luminosity
decay

All Science Journal Classification (ASJC) codes

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data. / Atlas Collaboration.

In: European Physical Journal C, Vol. 77, No. 3, 195, 01.03.2017.

Research output: Contribution to journalArticle

@article{508192a5a6f547edb8c83c3a8df3022c,
title = "Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data",
abstract = "This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97{\%} for electrons with ET= 15 GeV and 99{\%} at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95{\%}, depending on the transverse momentum of the electron and background rejection.",
author = "{Atlas Collaboration} and M. Aaboud and G. Aad and B. Abbott and J. Abdallah and O. Abdinov and B. Abeloos and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and Adams, {D. L.} and J. Adelman and S. Adomeit and T. Adye and Affolder, {A. A.} and T. Agatonovic-Jovin and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and H. Akerstedt and {\AA}kesson, {T. P.A.} and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and S. Albrand and {Alconada Verzini}, {M. J.} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and T. Alexopoulos and M. Alhroob and B. Ali and M. Aliev and G. Alimonti and J. Alison and Alkire, {S. P.} and Allbrooke, {B. M.M.} and Allen, {B. W.} and Allport, {P. P.} and A. Aloisio and A. Alonso and F. Alonso and C. Alpigiani",
year = "2017",
month = "3",
day = "1",
doi = "10.1140/epjc/s10052-017-4756-2",
language = "English",
volume = "77",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Electron efficiency measurements with the ATLAS detector using 2012 LHC proton–proton collision data

AU - Atlas Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdallah, J.

AU - Abdinov, O.

AU - Abeloos, B.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adams, D. L.

AU - Adelman, J.

AU - Adomeit, S.

AU - Adye, T.

AU - Affolder, A. A.

AU - Agatonovic-Jovin, T.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albrand, S.

AU - Alconada Verzini, M. J.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexander, G.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Aliev, M.

AU - Alimonti, G.

AU - Alison, J.

AU - Alkire, S. P.

AU - Allbrooke, B. M.M.

AU - Allen, B. W.

AU - Allport, P. P.

AU - Aloisio, A.

AU - Alonso, A.

AU - Alonso, F.

AU - Alpigiani, C.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with ET= 15 GeV and 99% at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.

AB - This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with ET= 15 GeV and 99% at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.

UR - http://www.scopus.com/inward/record.url?scp=85016328339&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016328339&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-017-4756-2

DO - 10.1140/epjc/s10052-017-4756-2

M3 - Article

AN - SCOPUS:85016328339

VL - 77

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 3

M1 - 195

ER -