Abstract
We report the electronic structure and thermoelectric properties of a tin titanium trisulfide, Sn1.2Ti0.8S3. The crystal structure is composed of infinite "ribbons" of double edge-sharing (Sn4+/Ti4+)S6 octahedra capped by Sn2+. First-principles calculations predict a nearly unidirectional transport of electrons along the ribbon axis for a single crystal and the existence of lone-pair electrons on Sn2+. Experiments on polycrystalline pressed samples demonstrate that Sn1.2Ti0.8S3 exhibits semiconducting temperature dependence of electrical resistivity and a large negative Seebeck coefficient at room temperature. Substitution of Nb5+ for Sn4+ at the octahedral sites increases the electron carrier concentration, leading to an enhancement of the thermoelectric power factor. Anisotropy in the electronic properties is weak because of a weak orientation of the ribbon axis of crystallites in the pressed sample. The lattice thermal conductivity is less than 1 W K-1 m-1 for the pristine and substituted samples, which is attributed to weak bonding between the ribbons via the lone-pair electrons of Sn2+ and to random occupation of Sn4+, Ti4+, and Nb5+ at the octahedral sites.
Original language | English |
---|---|
Article number | 175111 |
Journal | Journal of Applied Physics |
Volume | 125 |
Issue number | 17 |
DOIs | |
Publication status | Published - May 7 2019 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)