Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential

Il Keun Kwon, Satoru Kidoaki, Takehisa Matsuda

Research output: Contribution to journalArticlepeer-review

490 Citations (Scopus)

Abstract

Nano- to micro-structured biodegradable poly(l-lactide-co-ε- caprolactone) (PLCL) fabrics were prepared by electrospinning. Electrospun microfiber fabrics with different compositions of PLCL (mol% in feed; 70/30, 50/50, and 30/70), poly(l-lactide) (PLL) and poly(ε-caprolactone) (PCL) were obtained using methylene chloride (MC) as a solvent. The PLL microfiber exhibited a nanoscale-pore structure with a pore diameter of approximately 200-800 nm at the surface and subsurface regions, whereas such a surface structure was hardly observed in other polymers containing CL. The microfiber fabric made of PLCL 50/50 was elastomeric. Nanoscale-fiber fabrics with PLCL 50/50 (approx. 0.3 or 1.2 μm in diameter) were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent. Mercury porosimetry showed that the decrease in the fiber diameter of the fabric decreased porosity, but increased fiber density and mechanical strength. Human umbilical vein endothelial cells (HUVECs) were adhered well and proliferated on the small-diameter-fiber fabrics (0.3 and 1.2 μm in diameter), both of which are dense fabrics, whereas markedly reduced cell adhesion, restricted cell spreading and no signs of proliferation were observed on the large-diameter-fiber fabric (7.0 μm in diameter). The potential biomedical application of electrospun PLCL 50/50 was discussed.

Original languageEnglish
Pages (from-to)3929-3939
Number of pages11
JournalBiomaterials
Volume26
Issue number18
DOIs
Publication statusPublished - Jun 2005
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential'. Together they form a unique fingerprint.

Cite this