Energy-efficient resource allocation in sensing-based spectrum sharing for cooperative cognitive radio networks

Wanming Hao, Shouyi Yang, Osamu Muta, Haris Gacanin, Hiroshi Furukawa

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.

Original languageEnglish
Pages (from-to)1763-1771
Number of pages9
JournalIEICE Transactions on Communications
VolumeE99B
Issue number8
DOIs
Publication statusPublished - Aug 2016

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Energy-efficient resource allocation in sensing-based spectrum sharing for cooperative cognitive radio networks'. Together they form a unique fingerprint.

Cite this