Energy optimization for scientific programs using auto-tuning language ppOpen-AT

Takahiro Katagiri, Cheng Luo, Reiji Suda, Shoichi Hirasawa, Satoshi Ohshima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In this paper, we demonstrate a new approach for power-consumption optimization using a dedicated Auto-tuning (AT) language. Our approach is based on recently developed technologies: (1) a power measurement application programming interface, (2) an AT mathematical core library. Preliminary performance evaluation enables us to select the best kernel for a real-world scientific program using either the CPU or Graphics Processing Unit, with respect to energy consumption. From the results of the evaluation, we found the performance-changing point in the experimental environment.

Original languageEnglish
Title of host publicationProceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013
PublisherIEEE Computer Society
Pages123-128
Number of pages6
ISBN (Print)9780768550862
DOIs
Publication statusPublished - Jan 1 2013
Event2013 IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013 - Tokyo, Japan
Duration: Sep 26 2013Sep 28 2013

Publication series

NameProceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013

Other

Other2013 IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013
CountryJapan
CityTokyo
Period9/26/139/28/13

Fingerprint

Tuning
Application programming interfaces (API)
Program processors
Electric power utilization
Energy utilization
Graphics processing unit

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture

Cite this

Katagiri, T., Luo, C., Suda, R., Hirasawa, S., & Ohshima, S. (2013). Energy optimization for scientific programs using auto-tuning language ppOpen-AT. In Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013 (pp. 123-128). [6657916] (Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013). IEEE Computer Society. https://doi.org/10.1109/MCSoC.2013.14

Energy optimization for scientific programs using auto-tuning language ppOpen-AT. / Katagiri, Takahiro; Luo, Cheng; Suda, Reiji; Hirasawa, Shoichi; Ohshima, Satoshi.

Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013. IEEE Computer Society, 2013. p. 123-128 6657916 (Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Katagiri, T, Luo, C, Suda, R, Hirasawa, S & Ohshima, S 2013, Energy optimization for scientific programs using auto-tuning language ppOpen-AT. in Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013., 6657916, Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013, IEEE Computer Society, pp. 123-128, 2013 IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013, Tokyo, Japan, 9/26/13. https://doi.org/10.1109/MCSoC.2013.14
Katagiri T, Luo C, Suda R, Hirasawa S, Ohshima S. Energy optimization for scientific programs using auto-tuning language ppOpen-AT. In Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013. IEEE Computer Society. 2013. p. 123-128. 6657916. (Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013). https://doi.org/10.1109/MCSoC.2013.14
Katagiri, Takahiro ; Luo, Cheng ; Suda, Reiji ; Hirasawa, Shoichi ; Ohshima, Satoshi. / Energy optimization for scientific programs using auto-tuning language ppOpen-AT. Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013. IEEE Computer Society, 2013. pp. 123-128 (Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013).
@inproceedings{4af8f5c56bf44eca8dd2202346a9e747,
title = "Energy optimization for scientific programs using auto-tuning language ppOpen-AT",
abstract = "In this paper, we demonstrate a new approach for power-consumption optimization using a dedicated Auto-tuning (AT) language. Our approach is based on recently developed technologies: (1) a power measurement application programming interface, (2) an AT mathematical core library. Preliminary performance evaluation enables us to select the best kernel for a real-world scientific program using either the CPU or Graphics Processing Unit, with respect to energy consumption. From the results of the evaluation, we found the performance-changing point in the experimental environment.",
author = "Takahiro Katagiri and Cheng Luo and Reiji Suda and Shoichi Hirasawa and Satoshi Ohshima",
year = "2013",
month = "1",
day = "1",
doi = "10.1109/MCSoC.2013.14",
language = "English",
isbn = "9780768550862",
series = "Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013",
publisher = "IEEE Computer Society",
pages = "123--128",
booktitle = "Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013",
address = "United States",

}

TY - GEN

T1 - Energy optimization for scientific programs using auto-tuning language ppOpen-AT

AU - Katagiri, Takahiro

AU - Luo, Cheng

AU - Suda, Reiji

AU - Hirasawa, Shoichi

AU - Ohshima, Satoshi

PY - 2013/1/1

Y1 - 2013/1/1

N2 - In this paper, we demonstrate a new approach for power-consumption optimization using a dedicated Auto-tuning (AT) language. Our approach is based on recently developed technologies: (1) a power measurement application programming interface, (2) an AT mathematical core library. Preliminary performance evaluation enables us to select the best kernel for a real-world scientific program using either the CPU or Graphics Processing Unit, with respect to energy consumption. From the results of the evaluation, we found the performance-changing point in the experimental environment.

AB - In this paper, we demonstrate a new approach for power-consumption optimization using a dedicated Auto-tuning (AT) language. Our approach is based on recently developed technologies: (1) a power measurement application programming interface, (2) an AT mathematical core library. Preliminary performance evaluation enables us to select the best kernel for a real-world scientific program using either the CPU or Graphics Processing Unit, with respect to energy consumption. From the results of the evaluation, we found the performance-changing point in the experimental environment.

UR - http://www.scopus.com/inward/record.url?scp=84892664299&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84892664299&partnerID=8YFLogxK

U2 - 10.1109/MCSoC.2013.14

DO - 10.1109/MCSoC.2013.14

M3 - Conference contribution

AN - SCOPUS:84892664299

SN - 9780768550862

T3 - Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013

SP - 123

EP - 128

BT - Proceedings - IEEE 7th International Symposium on Embedded Multicore/Manycore System-on-Chip, MCSoC 2013

PB - IEEE Computer Society

ER -