Energy saving potential of passive dehumidification system combined with energy recovery ventilation using renewable energy

Yulu Chen, Akihito Ozaki, Hak Sung Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Passive dehumidification and solar collection (PDSC) employs fibrous insulation materials with excellent moisture adsorption and desorption characteristics to conduct dehumidification using renewable energy. This study proposes an improved PDSC-integrated energy recovery ventilation (ERV) system (PSE) to dehumidify indoor environments. Energy recovery ventilation (ERV) promotes the exchange of moisture and heat between returned and supplied air to reduce energy loss caused by ventilation. We explained the fundamental moisture movement principle based on thermodynamic energy and designed the air circulation paths of the proposed system for dehumidification and energy recovery. Five house models were simulated and compared: conventional house with no moisture effect, conventional house, conventional house with integrated ERV, the PDSC model, and the PSE model. Simulation results show that the PSE model has the best dehumidification performance, with an approximately 2.9 times latent heat load reduction effect compared with the PDSC model, in hot and humid summer. This study confirms that the proposed system has significant potential for dehumidifying the indoor environment and provides guidance for the future application of the PSE system to dwellings.

Original languageEnglish
Article number112170
JournalEnergy and Buildings
Volume268
DOIs
Publication statusPublished - Aug 1 2022

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Energy saving potential of passive dehumidification system combined with energy recovery ventilation using renewable energy'. Together they form a unique fingerprint.

Cite this