Engineering a three-dimensional tissue model with a perfusable vasculature in a microfluidic device

Yuji Nashimoto, Itsuki Kunita, Akiko Nakamasu, Yu Suke Torisawa, Masamune Nakayama, Hidetoshi Kotera, Koichi Nishiyama, Takashi Miura, Ryuji Yokokawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this study, we developed a microfluidic platform for a three-dimensional tissue model with a perfusable capillary network, which will allow, for the first time, a perfusion-culture in a tissue model with a high cell density. Our group previously reported that a spheroid of lung fibroblasts induced angiogenic sprouts from microchannels [1]. In this study, we successfully connected angiogenic sprouts to the vessel-like hollow structure in a spheroid and perfused the formed vascular network through microfluidic channels to the spheroid. This model opens up new techniques for tissue-culture for long-term.

Original languageEnglish
Title of host publication2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, MEMS 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages592-595
Number of pages4
ISBN (Electronic)9781509050789
DOIs
Publication statusPublished - Feb 23 2017
Event30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017 - Las Vegas, United States
Duration: Jan 22 2017Jan 26 2017

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
ISSN (Print)1084-6999

Other

Other30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017
CountryUnited States
CityLas Vegas
Period1/22/171/26/17

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Engineering a three-dimensional tissue model with a perfusable vasculature in a microfluidic device'. Together they form a unique fingerprint.

Cite this