Abstract
Experiments were conducted to study the effects of micro-pin-fins and submicron-scale roughness on the boiling heat transfer from a silicon chip immersed in a pool of degassed and gas-dissolved FC-72. Square pin-fins with fin dimensions of 50×50×60 μm 3 (width ×thickness×height) and submicron-scale roughness (RMS roughness of 25 to 32 nm) were fabricated on the surface of square silicon chip (10×10×0.5 mm 3) by use of microelectronic fabrication techniques. Experiments were conducted at the liquid sub-coolings of 0, 3, 25, and 45 K. Both the micro-pin-finned chip and the chip with submicron-scale roughness showed a considerable heat transfer enhancement as compared to a smooth chip in the nucleate boiling region. The chip with submicron-scale roughness showed a higher heat transfer performance than the micro-pin-finned chip in the low-heat-flux region. The micro-pin-finned chip showed a steep increase in the heat flux with increasing wall superheat. This chip showed a higher heat transfer performance than the chip with submicron-scale roughness in the high-heat-flux region. The micro-pin-finned chip with submicron-scale roughness on it showed the highest heat transfer performance in the high-heat-flux region. While the wall superheat at boiling incipience was strongly dependent on the dissolved gas content, it was little affected by the liquid sub-cooling.
Original language | English |
---|---|
Pages (from-to) | 383-390 |
Number of pages | 8 |
Journal | Journal of Heat Transfer |
Volume | 124 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2002 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering