Enhanced catalytic performance of spinel-type Cu-Mn oxides for benzene oxidation under microwave irradiation

Siyu Ding, Chen Zhu, Hajime Hojo, Hisahiro Einaga

Research output: Contribution to journalArticlepeer-review

Abstract

Microwave-assisted heterogeneous catalytic oxidation of benzene was investigated over Cu-Mn spinel oxides. The spinel oxides were synthesized by a coprecipitation method from metal nitrate hydrolysis in a solution using tetramethylammonium hydroxide (TMAH) as a precipitation reagent. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure, scanning electron microscopy, transmission electron microscope and H2-temperature-programmed reduction studies. Microwave absorption by the Cu-Mn spinel oxide is mainly driven by dielectric losses (dielectric heating). Cu-Mn spinel oxide with a Cu/Mn ratio of 1 exhibited superior activity to single oxides under microwave heating, demonstrating lower apparent activation energy than that obtained under conventional heating. Microwave irradiation lowered the reaction temperature required for benzene oxidation compared with conventional heating. Transient tests were used to investigate the reactivity of oxygen species in the catalytic reaction, and the high reactivity of Cu-Mn spinel oxides was related to the high reactivity of lattice oxygen on the catalyst surface. The reactivity of the oxygen species was enhanced under microwave heating, leading to an enhanced benzene oxidation reaction. The combination of adsorption and catalytic oxidation processes using Cu-Mn spinel oxides and zeolites efficiently decomposed benzene at low concentrations.

Original languageEnglish
Article number127523
JournalJournal of Hazardous Materials
Volume424
DOIs
Publication statusPublished - Feb 15 2022

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Enhanced catalytic performance of spinel-type Cu-Mn oxides for benzene oxidation under microwave irradiation'. Together they form a unique fingerprint.

Cite this