Enhanced Electrochemical and Transportation Properties in a NASICON-Type Na3Zr2(SiO4)2(PO4)-Na3Ti2(PO4)3 Junction Prepared by Spin Coating and Glass-Ceramic Processes

Shufan Jia, Saneyuki Ohno, Jian Wang, George Hasegawa, Hirofumi Akamatsu, Katsuro Hayashi

Research output: Contribution to journalArticlepeer-review

Abstract

Impacts of an electrode active material with 1 μm scale thickness on the performance of an oxide-based all-solid-state battery (ASSB) have been investigated by metallic Na | Na3Zr2(SiO4)2(PO4) (NZSP) | Na3Ti2(PO4)3 (NTP) cells. Dense crystalline NTP layer is formed on NZSP ceramic electrolyte using spin coating of glass powder suspension and subsequent crystallization (glass-ceramic process). A sample with 0.6 μm thick NTP layer exhibits 0.1 C charge/discharge cycling with very small polarization (<0.03 V), and its initial capacity of ∼60 mA h g-1 is retained >80% after 60 cycles. Fast cathode kinetics also realized the 0.1 C capacity at −20 °C to be ∼80% retention. Furthermore, a facile control over the thickness of cathode films without any conductive additives in the 1 μm range demonstrated in this work enables the assessment of cathode kinetics. Electrochemical impedance spectroscopy revealed that Warburg resistance originates from an ambipolar diffusion of an electron and Na+ ion. The methodology presented here paves a way for rapid examinations of electrode material compatibility and electrode design for next-generation oxide-based ASSBs.

Original languageEnglish
Pages (from-to)317-325
Number of pages9
JournalACS Applied Energy Materials
Volume6
Issue number1
DOIs
Publication statusPublished - Jan 9 2023

All Science Journal Classification (ASJC) codes

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrochemistry
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Enhanced Electrochemical and Transportation Properties in a NASICON-Type Na3Zr2(SiO4)2(PO4)-Na3Ti2(PO4)3 Junction Prepared by Spin Coating and Glass-Ceramic Processes'. Together they form a unique fingerprint.

Cite this