TY - JOUR
T1 - Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes
T2 - A transcriptional control of a plausible bile acid transporter
AU - Inokuchi, Akihiko
AU - Hinoshita, Eiji
AU - Iwamoto, Yukihide
AU - Kohno, Kimitoshi
AU - Kuwano, Michihiko
AU - Uchiumi, Takeshi
PY - 2001/12/14
Y1 - 2001/12/14
N2 - The enterohepatic circulation is essential for the maintenance of bile acids and cholesterol homeostasis. The ileal bile acid transporter on the apical membrane of enterocytes mediates the intestinal uptake of bile salts, but little is known about the bile salt secretion from the basolateral membrane of enterocytes into blood. In the basolateral membrane of enterocytes, an ATP-binding cassette transporter, multidrug resistance protein 3 (MRP3), is expressed, which has the ability to transport bile salts. We hypothesized that MRP3 might play a role in the enterohepatic circulation of bile salts by transporting them from enterocytes into circulating blood through the up-regulation of MRP3 expression, so we investigated the transcriptional control of MRP3 in response to bile salts. MRP3 mRNA levels were increased about 3-fold in human colon cells by chenode-oxycholic acid (CDCA), in a dose- and time-dependent manner. In the promoter assay, the promoter activity of MRP3 was increased about 3-fold over the basal promoter activity when treated with CDCA, and the putative bile salt-responsive elements exist in the region -229/-138 including two α-1 fetoprotein transcription factor (FTF)-like elements. Constructs with a specific mutation in the consensus sequence of FTF elements showed no increase in basal transcriptional activity following CDCA treatment. In electrophoretic mobility shift assay with nuclear extracts, specific binding of FTF to FTF-like elements was observed when treated with CDCA. The expression of FTF mRNA levels were also markedly enhanced in response to CDCA, and over-expression of FTF specifically activated the MRP3 promoter activity about 4-fold over the basal promoter activity. FTF thus might play a key role not only in the bile salt synthetic pathway in hepatocytes but also in the bile salt excretion pathway in enterocytes through the regulation of MRP3 expression. MRP3 may contribute as a plausible bile salt-exporting transporter to the enterohepatic circulation of bile salts.
AB - The enterohepatic circulation is essential for the maintenance of bile acids and cholesterol homeostasis. The ileal bile acid transporter on the apical membrane of enterocytes mediates the intestinal uptake of bile salts, but little is known about the bile salt secretion from the basolateral membrane of enterocytes into blood. In the basolateral membrane of enterocytes, an ATP-binding cassette transporter, multidrug resistance protein 3 (MRP3), is expressed, which has the ability to transport bile salts. We hypothesized that MRP3 might play a role in the enterohepatic circulation of bile salts by transporting them from enterocytes into circulating blood through the up-regulation of MRP3 expression, so we investigated the transcriptional control of MRP3 in response to bile salts. MRP3 mRNA levels were increased about 3-fold in human colon cells by chenode-oxycholic acid (CDCA), in a dose- and time-dependent manner. In the promoter assay, the promoter activity of MRP3 was increased about 3-fold over the basal promoter activity when treated with CDCA, and the putative bile salt-responsive elements exist in the region -229/-138 including two α-1 fetoprotein transcription factor (FTF)-like elements. Constructs with a specific mutation in the consensus sequence of FTF elements showed no increase in basal transcriptional activity following CDCA treatment. In electrophoretic mobility shift assay with nuclear extracts, specific binding of FTF to FTF-like elements was observed when treated with CDCA. The expression of FTF mRNA levels were also markedly enhanced in response to CDCA, and over-expression of FTF specifically activated the MRP3 promoter activity about 4-fold over the basal promoter activity. FTF thus might play a key role not only in the bile salt synthetic pathway in hepatocytes but also in the bile salt excretion pathway in enterocytes through the regulation of MRP3 expression. MRP3 may contribute as a plausible bile salt-exporting transporter to the enterohepatic circulation of bile salts.
UR - http://www.scopus.com/inward/record.url?scp=0035861581&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035861581&partnerID=8YFLogxK
U2 - 10.1074/jbc.M104612200
DO - 10.1074/jbc.M104612200
M3 - Article
C2 - 11590139
AN - SCOPUS:0035861581
SN - 0021-9258
VL - 276
SP - 46822
EP - 46829
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -