Enhanced osseointegration capability of poly(Ether ether ketone) via combined phosphate and calcium surface-functionalization

Sunarso, Akira Tsuchiya, Riki Toita, Kanji Tsuru, Kunio Ishikawa

Research output: Contribution to journalArticle

Abstract

Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.

Original languageEnglish
Article number198
JournalInternational journal of molecular sciences
Volume21
Issue number1
DOIs
Publication statusPublished - Jan 1 2020

Fingerprint

Osseointegration
Polyether ether ketones
Ketones
ketones
Ether
calcium
Calcium
ethers
phosphates
Phosphates
Bone
bones
Ozone
Phosphatases
Hydrophilicity
Orthopedics
Cell proliferation
Surface topography
Stem cells
Bone and Bones

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{80cc62aaa34b45ee9ed7f51655f35b34,
title = "Enhanced osseointegration capability of poly(Ether ether ketone) via combined phosphate and calcium surface-functionalization",
abstract = "Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.",
author = "Sunarso and Akira Tsuchiya and Riki Toita and Kanji Tsuru and Kunio Ishikawa",
year = "2020",
month = "1",
day = "1",
doi = "10.3390/ijms21010198",
language = "English",
volume = "21",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "1",

}

TY - JOUR

T1 - Enhanced osseointegration capability of poly(Ether ether ketone) via combined phosphate and calcium surface-functionalization

AU - Sunarso,

AU - Tsuchiya, Akira

AU - Toita, Riki

AU - Tsuru, Kanji

AU - Ishikawa, Kunio

PY - 2020/1/1

Y1 - 2020/1/1

N2 - Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.

AB - Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.

UR - http://www.scopus.com/inward/record.url?scp=85077380267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85077380267&partnerID=8YFLogxK

U2 - 10.3390/ijms21010198

DO - 10.3390/ijms21010198

M3 - Article

C2 - 31892154

AN - SCOPUS:85077380267

VL - 21

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 1

M1 - 198

ER -