TY - GEN
T1 - Enhanced thermal conductivity of water with surfactant encapsulated and individualized single-walled carbon nanotube dispersions
AU - Harish, S.
AU - Ishikawa, Kei
AU - Einarsson, Erik
AU - Inoue, Taiki
AU - Chiashi, Shohei
AU - Shiomi, Junichiro
AU - Maruyama, Shigeo
PY - 2012
Y1 - 2012
N2 - In the present work, the effective thermal conductivity of single walled carbon nanotube dispersions in water was investigated experimentally. Single-walled carbon nanotubes (SWNTs) were synthesized using the alcohol catalytic chemical vapour deposition method. The diameter distribution of the SWNTs was determined using resonance Raman spectroscopy. Sodium deoxycholate (SDC) was used as the surfactant to prepare the nanofluid dispersions. Photoluminescence excitation spectroscopy (PLE) reveals that majority of the nanotubes were highly individualized when SDC was employed as the surfactant. The nanofluid dispersions were further characterized using transmission electron microscopy, atomic force microscopy (AFM) and optical absorption spectroscopy (OAS). Thermal conductivity measurements were carried out using a transient hot wire technique. Nanotube loading of up to 0.3 vol% was used. Thermal conductivity enhancement was found to be dependent on nanotube volume fraction and temperature. At room temperature the thermal conductivity enhancement was found to be non-linear and a maximum enhancement of 13.8% was measured at 0.3 vol% loading. Effective thermal conductivity was increased to 51% at 333 K when the nanotube loading is 0.3 vol%. Classical macroscopic models fail to predict the measured thermal conductivity enhancement precisely. The possible mechanism for the enhancement observed is attributed to the percolation of nanotubes to form a three-dimensional structure. Indirect effects of Brownian motion may assist the formation of percolating networks at higher temperature thereby leading to further enhancements at higher temperature.
AB - In the present work, the effective thermal conductivity of single walled carbon nanotube dispersions in water was investigated experimentally. Single-walled carbon nanotubes (SWNTs) were synthesized using the alcohol catalytic chemical vapour deposition method. The diameter distribution of the SWNTs was determined using resonance Raman spectroscopy. Sodium deoxycholate (SDC) was used as the surfactant to prepare the nanofluid dispersions. Photoluminescence excitation spectroscopy (PLE) reveals that majority of the nanotubes were highly individualized when SDC was employed as the surfactant. The nanofluid dispersions were further characterized using transmission electron microscopy, atomic force microscopy (AFM) and optical absorption spectroscopy (OAS). Thermal conductivity measurements were carried out using a transient hot wire technique. Nanotube loading of up to 0.3 vol% was used. Thermal conductivity enhancement was found to be dependent on nanotube volume fraction and temperature. At room temperature the thermal conductivity enhancement was found to be non-linear and a maximum enhancement of 13.8% was measured at 0.3 vol% loading. Effective thermal conductivity was increased to 51% at 333 K when the nanotube loading is 0.3 vol%. Classical macroscopic models fail to predict the measured thermal conductivity enhancement precisely. The possible mechanism for the enhancement observed is attributed to the percolation of nanotubes to form a three-dimensional structure. Indirect effects of Brownian motion may assist the formation of percolating networks at higher temperature thereby leading to further enhancements at higher temperature.
UR - http://www.scopus.com/inward/record.url?scp=84882297566&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84882297566&partnerID=8YFLogxK
U2 - 10.1115/MNHMT2012-75021
DO - 10.1115/MNHMT2012-75021
M3 - Conference contribution
AN - SCOPUS:84882297566
SN - 9780791854778
T3 - ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012
SP - 145
EP - 153
BT - ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012
T2 - ASME 2012 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2012
Y2 - 3 March 2012 through 6 March 2012
ER -