Enhancers predominantly regulate gene expression during differentiation via transcription initiation

Martin S.C. Larke, Ron Schwessinger, Takayuki Nojima, Jelena Telenius, Robert A. Beagrie, Damien J. Downes, A. Marieke Oudelaar, Julia Truch, Bryony Graham, M. A. Bender, Nicholas J. Proudfoot, Douglas R. Higgs, Jim R. Hughes

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and β-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process. Larke et al. use a modification of Start-seq (scaRNA-seq) to simultaneously quantify initiation and pausing. Combined with nascent transcription assays, they show that initiation is the predominant point of transcriptional control during differentiation. Specific enhancer deletions cause loss of Pol II recruitment or initiation rather than affecting Pol II pausing.

Original languageEnglish
Pages (from-to)983-997.e7
JournalMolecular Cell
Volume81
Issue number5
DOIs
Publication statusPublished - Mar 4 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Enhancers predominantly regulate gene expression during differentiation via transcription initiation'. Together they form a unique fingerprint.

Cite this