Essential role of catalyst in vapor-liquid-solid growth of compounds

Masaru Suzuki, Yoshiki Hidaka, Takeshi Yanagida, Annop Klamchuen, Masaki Kanai, Tomoji Kawai, Shoichi Kai

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The mechanism of the solidification of compound materials, such as oxide crystals, in a vapor-liquid-solid (VLS) system is investigated by model molecular dynamics simulation. A simple model for the VLS growth of a compound crystal is proposed to clarify the general mechanism of how a liquid solvent catalyzes the growth rate. We find that the nucleation process at the solid surface is responsible for limiting the growth rate, and that the solvent catalyzes the nucleation by reducing the critical nucleation size at the liquid-solid interface. Our theoretical suggestion that the ratio of the vapor-solid (VS) growth rate to the VLS growth rate strongly depends on the supply rate qualitatively agrees well with the experimental result. Finally, we simulate the entire process of VLS nanowire formation.

Original languageEnglish
Article number061606
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume83
Issue number6
DOIs
Publication statusPublished - Jun 28 2011

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Essential role of catalyst in vapor-liquid-solid growth of compounds'. Together they form a unique fingerprint.

Cite this