Establishment of a Japanese medaka (Oryzias latipes) transgenic line expressing Takifugu rubripes pufferfish saxitoxin and tetrodotoxin binding protein 1, and evaluation of tributyltin toxicity via in ovo nanoinjection

Yuki Takai, Naohiro Mizoguchi, Masato Kinoshita, Xuchun Qiu, Yohei Shimasaki, Yuji Oshima

Research output: Contribution to journalArticle

Abstract

Pufferfish saxitoxin and tetrodotoxin binding proteins (PSTBPs) play an important role in the toxification of certain species of pufferfish. Recombinant Takifugu rubripes PSTBP1 (rTrub.PSTBP1) is reported to bind to tributyltin, and so it has been suggested that rTrub.PSTBP1 may reduce the toxicity of tributyltin. However, the role of PSTBP1 in vivo remains to be elucidated. Here, we established a transgenic medaka line showing whole-body Renilla reniformis green fluorescent protein and Trub.PSTBP1 expression, as confirmed by real-time polymerase chain reaction and mRNA-Seq analysis. mRNA-Seq analysis also showed that cytochrome P450 superfamily genes and the gene encoding ATP-binding cassette sub-family G member 2 were highly expressed in the transgenic medaka. Using embryos of the transgenic medaka line, we conducted an in ovo nanoinjection test to examine the effect of Trub.PSTBP1 in vivo, and obtained data suggesting that Trub.PSTBP1 expression may have reduced the toxicity of tributyltin in our transgenic medaka line. Our findings will be useful for future functional analyses of Trub.PSTBP1.

Original languageEnglish
Article number108785
JournalComparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology
Volume234
DOIs
Publication statusPublished - Aug 2020

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physiology
  • Toxicology
  • Cell Biology
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Establishment of a Japanese medaka (Oryzias latipes) transgenic line expressing Takifugu rubripes pufferfish saxitoxin and tetrodotoxin binding protein 1, and evaluation of tributyltin toxicity via in ovo nanoinjection'. Together they form a unique fingerprint.

  • Cite this