Establishment of screening system toward discovery of kinase inhibitors using label-free on-chip phosphorylation assays

Kazuki Inamori, Motoki Kyo, Kazuki Matsukawa, Yusuke Inoue, Tatsuhiko Sonoda, Takeshi Mori, Takuro Niidome, Yoshiki Katayama

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We describe a label-free method for the kinase inhibition assay toward discovery of kinase inhibitors. The surface plasmon resonance (SPR) imaging analysis using zinc(II) compound was adopted on the on-chip phosphorylation analysis. In this study, following three subjects were focused: (1) to monitor the inhibition of three inhibitors supporting by their specific inhibition mechanisms, (2) to quantify the inhibitory activities, and (3) to prove the reliability of the obtained 50% inhibition concentration (IC50) value. First, the inhibitory activities of Amide 5-24, H-89 and Gö6983 on PKA and PKCδ were determined, and specific inhibitions for two kinases could be observed quantitatively. Second, the inhibition curves of Amide 5-24, Amide 14-22 and H-89 were obtained, and the results supported the two previous reports: (1) the inhibition efficiency of Amide 5-24 was much higher than that of Amide 14-22, and (2) the inhibitory activity of H-89 followed ATP-binding site blocking mechanism. Last, the obtained IC50 values by the SPR imaging were almost corresponded to those by the solution assay, although on-chip phosphorylation efficiency was low (approximately 12%). In conclusion, validation of the on-chip phosphorylation analysis for kinase inhibitors was achieved. This label-free method might be applied for discovery of kinase inhibitors.

Original languageEnglish
Pages (from-to)179-185
Number of pages7
JournalBioSystems
Volume97
Issue number3
DOIs
Publication statusPublished - Sep 1 2009

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modelling and Simulation
  • Biochemistry, Genetics and Molecular Biology(all)
  • Applied Mathematics

Cite this