Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model

Xueshun Chen, Zifa Wang, Fangqun Yu, Xiaole Pan, Jie Li, Baozhu Ge, Zhe Wang, Min Hu, Wenyi Yang, Huansheng Chen

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Mixing state of black carbon (BC) particles has significant impacts on their radiative forcing, visibility impairment and the ability in modifying cloud formation. In this study, an aging scheme of BC particles using prognostic variables based on aerosol microphysics was incorporated into a regional atmospheric chemistry model, Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics (NAQPMS + APM), to investigate the temporal and spatial variations in aging time scale of BC particles in polluted atmosphere over central-eastern China. The model results show that the aging time scale has a clear diurnal variation with a lower value in the daytime and a higher value in the nighttime. The shorter aging time scale in the daytime is due to condensation aging associated with intense photochemical reaction while the longer aging time scale in the nighttime is due to coagulation aging, which is much slower than that due to condensation. In Beijing, the aging time scale is 2 h or less in the surface layer in daytime, which is far below the fixed 1.2 days used in many models. As a result, the fraction of hydrophilic BC particles by the new scheme is larger than that by the scheme with fixed aging time scale though the mean aging time scale by the new scheme is much larger than 1.2 days. Hydrophilic fraction of BC particles increases with the increase of height. Over central-eastern China, the averaged aging time scale calculated by the new scheme is in the range from 12 h to 7 days, with higher values in regions far from the source areas. Hydrophilic fraction of BC particles is more than 90% at the higher levels in polluted atmosphere. Difference of simulated BC concentration with internal mixing and microphysical aging is within 5%, indicating that the assumption of internal mixing for BC particles to respond to in-cloud scavenging is more appropriate than the external mixing assumption in polluted atmosphere over central-eastern China.

Original languageEnglish
Pages (from-to)44-56
Number of pages13
JournalAtmospheric Environment
Volume163
DOIs
Publication statusPublished - Jan 1 2017

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model'. Together they form a unique fingerprint.

  • Cite this