TY - GEN
T1 - Estimation of gasification area of underground coal gasification by using acoustic emission monitoring
AU - Hamanaka, Akihiro
AU - Itakura, Ken ichi
AU - Su, Fa qiang
AU - Deguchi, Gota
AU - Kodama, Jun ichi
N1 - Funding Information:
This work was supported by the Japanese Society on UCG, Mikasa City, Center of Environmental Science and Disaster Mitigation for Advanced Research of Muroran Institute of Technology and JSPS KAKENHI Grant Number JP15H02332, and support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors gratefully acknowledge their support.
Publisher Copyright:
© 2018 ISRM & SRMEG (Singapore)
PY - 2018
Y1 - 2018
N2 - Underground coal gasification (UCG) is a process of producing combustible gases by the in-situ conversion of coal into gaseous products. Coal resources abandoned under the ground for either technical or economic reasons can be recovered with economically and less environmental impacts by UCG; therefore, this technology is regarded as a clean coal technology. UCG has several advantages of low investments, high efficiency, and high benefits compared to conventional coal gasification. However, some environmental risks such as gas leakage, surface subsidence, and underground water pollution are difficult to control because the process is invisible. The reactor in UCG is unstable and expands continuously due to fracturing activity caused by coal combustion. It is, therefore, considered that acoustic emission (AE) is an effective tool to monitor the fracturing activities and visualize the inner part of coal. For this study, UCG model experiments were conducted using coal blocks of 0.55 × 0.60 × 2.74 m to discuss the applicability of AE monitoring for the estimation of the crack generations during UCG process and the extent of the gasification area. Temperatures were also monitored because the crack generations were strongly related to thermal stress occurred by coal combustion and heat transfer. The monitoring results of AE agreed with the measured data of temperatures and the gasification area; the source location of AE was detected around the region temperature increased and the gasification area. Additionally, the gasified coal amount can be predicted by using the data of product gas. Therefore, AE monitoring combined with the prediction of reacted coal amount are expected to be a useful tool as monitoring system of the gasifier in the underground.
AB - Underground coal gasification (UCG) is a process of producing combustible gases by the in-situ conversion of coal into gaseous products. Coal resources abandoned under the ground for either technical or economic reasons can be recovered with economically and less environmental impacts by UCG; therefore, this technology is regarded as a clean coal technology. UCG has several advantages of low investments, high efficiency, and high benefits compared to conventional coal gasification. However, some environmental risks such as gas leakage, surface subsidence, and underground water pollution are difficult to control because the process is invisible. The reactor in UCG is unstable and expands continuously due to fracturing activity caused by coal combustion. It is, therefore, considered that acoustic emission (AE) is an effective tool to monitor the fracturing activities and visualize the inner part of coal. For this study, UCG model experiments were conducted using coal blocks of 0.55 × 0.60 × 2.74 m to discuss the applicability of AE monitoring for the estimation of the crack generations during UCG process and the extent of the gasification area. Temperatures were also monitored because the crack generations were strongly related to thermal stress occurred by coal combustion and heat transfer. The monitoring results of AE agreed with the measured data of temperatures and the gasification area; the source location of AE was detected around the region temperature increased and the gasification area. Additionally, the gasified coal amount can be predicted by using the data of product gas. Therefore, AE monitoring combined with the prediction of reacted coal amount are expected to be a useful tool as monitoring system of the gasifier in the underground.
UR - http://www.scopus.com/inward/record.url?scp=85064277508&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064277508&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85064277508
T3 - ISRM International Symposium - 10th Asian Rock Mechanics Symposium, ARMS 2018
BT - ISRM International Symposium - 10th Asian Rock Mechanics Symposium, ARMS 2018
PB - International Society for Rock Mechanics
T2 - 10th Asian Rock Mechanics Symposium, ARMS 2018
Y2 - 29 October 2018 through 3 November 2018
ER -