Estimation of melting points for some binary and tertiary fluoride molten salts

Satoshi Fukada, Akira Nakamura

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Mixtures of fluoride molten salts such as LiF + BeF2 (Flibe) and LiF + NaF + KF (Flinak) have been proposed as tritium breeders for fusion reactors and heat-transfer fluids for high-temperature fission reactors. The melting point of mixed molten salts is important in fusion and fission reactor designs. An analytical method using the activity coefficient of the Margules' equation and another method using an equilibrium constant when a new phase appears in the phase diagram are proposed for calculating melting points according to whether or not the new phase appears. First, the melting points of pure fluorides of LiF, NaF, KF, and BeF2 are investigated in detail, and uncertainties in the thermodynamic properties of the targeted molten salt mixtures are clarified. Then, the melting points of some binary- and tertiary-component fluoride molten salt mixtures of LiF + NaF (Flina), LiF + KF (Flik), NaF + KF (Fnak), LiF + NaF + KF (Flinak), LiF + BeF2 (Flibe), and NaF + BeF2 (Fnabe) are analytically investigated to enhance their wider application in fusion and fission reactors. Estimated melting points are compared with experimental data reported previously. Estimation errors are within 3.0 K (0.3%) for the pure fluorides and within 34 K (5.2%) for the binary or tertiary fluoride mixtures. Although estimation errors for the Flinak system are larger than those of previous reference data, the present estimation does not include an accommodation factor, and the parameter values included in the estimation are consistent with other thermodynamic data. The values of the activity coefficient used for estimation of the Flinak system and the equilibrium constant included in estimation of the Flibe and Fnabe systems are consistent with relevant thermodynamic properties. Therefore, the present method can be applied to estimate melting points for a range of multicomponent fluoride mixtures.

Original languageEnglish
Pages (from-to)322-336
Number of pages15
JournalFusion Science and Technology
Volume66
Issue number2
DOIs
Publication statusPublished - Oct 1 2014

Fingerprint

molten salts
Fluorides
melting points
Melting point
fluorides
Molten materials
Salts
fusion reactors
Fusion reactors
Nuclear reactors
fission
Activity coefficients
Equilibrium constants
Error analysis
Thermodynamic properties
thermodynamic properties
reactors
heat of fusion
reactor design
Tritium

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)
  • Mechanical Engineering

Cite this

Estimation of melting points for some binary and tertiary fluoride molten salts. / Fukada, Satoshi; Nakamura, Akira.

In: Fusion Science and Technology, Vol. 66, No. 2, 01.10.2014, p. 322-336.

Research output: Contribution to journalArticle

Fukada, Satoshi ; Nakamura, Akira. / Estimation of melting points for some binary and tertiary fluoride molten salts. In: Fusion Science and Technology. 2014 ; Vol. 66, No. 2. pp. 322-336.
@article{2a398d4c37a14d4b947154fd744919c0,
title = "Estimation of melting points for some binary and tertiary fluoride molten salts",
abstract = "Mixtures of fluoride molten salts such as LiF + BeF2 (Flibe) and LiF + NaF + KF (Flinak) have been proposed as tritium breeders for fusion reactors and heat-transfer fluids for high-temperature fission reactors. The melting point of mixed molten salts is important in fusion and fission reactor designs. An analytical method using the activity coefficient of the Margules' equation and another method using an equilibrium constant when a new phase appears in the phase diagram are proposed for calculating melting points according to whether or not the new phase appears. First, the melting points of pure fluorides of LiF, NaF, KF, and BeF2 are investigated in detail, and uncertainties in the thermodynamic properties of the targeted molten salt mixtures are clarified. Then, the melting points of some binary- and tertiary-component fluoride molten salt mixtures of LiF + NaF (Flina), LiF + KF (Flik), NaF + KF (Fnak), LiF + NaF + KF (Flinak), LiF + BeF2 (Flibe), and NaF + BeF2 (Fnabe) are analytically investigated to enhance their wider application in fusion and fission reactors. Estimated melting points are compared with experimental data reported previously. Estimation errors are within 3.0 K (0.3{\%}) for the pure fluorides and within 34 K (5.2{\%}) for the binary or tertiary fluoride mixtures. Although estimation errors for the Flinak system are larger than those of previous reference data, the present estimation does not include an accommodation factor, and the parameter values included in the estimation are consistent with other thermodynamic data. The values of the activity coefficient used for estimation of the Flinak system and the equilibrium constant included in estimation of the Flibe and Fnabe systems are consistent with relevant thermodynamic properties. Therefore, the present method can be applied to estimate melting points for a range of multicomponent fluoride mixtures.",
author = "Satoshi Fukada and Akira Nakamura",
year = "2014",
month = "10",
day = "1",
doi = "10.13182/FST13-694",
language = "English",
volume = "66",
pages = "322--336",
journal = "Fusion Science and Technology",
issn = "1536-1055",
publisher = "American Nuclear Society",
number = "2",

}

TY - JOUR

T1 - Estimation of melting points for some binary and tertiary fluoride molten salts

AU - Fukada, Satoshi

AU - Nakamura, Akira

PY - 2014/10/1

Y1 - 2014/10/1

N2 - Mixtures of fluoride molten salts such as LiF + BeF2 (Flibe) and LiF + NaF + KF (Flinak) have been proposed as tritium breeders for fusion reactors and heat-transfer fluids for high-temperature fission reactors. The melting point of mixed molten salts is important in fusion and fission reactor designs. An analytical method using the activity coefficient of the Margules' equation and another method using an equilibrium constant when a new phase appears in the phase diagram are proposed for calculating melting points according to whether or not the new phase appears. First, the melting points of pure fluorides of LiF, NaF, KF, and BeF2 are investigated in detail, and uncertainties in the thermodynamic properties of the targeted molten salt mixtures are clarified. Then, the melting points of some binary- and tertiary-component fluoride molten salt mixtures of LiF + NaF (Flina), LiF + KF (Flik), NaF + KF (Fnak), LiF + NaF + KF (Flinak), LiF + BeF2 (Flibe), and NaF + BeF2 (Fnabe) are analytically investigated to enhance their wider application in fusion and fission reactors. Estimated melting points are compared with experimental data reported previously. Estimation errors are within 3.0 K (0.3%) for the pure fluorides and within 34 K (5.2%) for the binary or tertiary fluoride mixtures. Although estimation errors for the Flinak system are larger than those of previous reference data, the present estimation does not include an accommodation factor, and the parameter values included in the estimation are consistent with other thermodynamic data. The values of the activity coefficient used for estimation of the Flinak system and the equilibrium constant included in estimation of the Flibe and Fnabe systems are consistent with relevant thermodynamic properties. Therefore, the present method can be applied to estimate melting points for a range of multicomponent fluoride mixtures.

AB - Mixtures of fluoride molten salts such as LiF + BeF2 (Flibe) and LiF + NaF + KF (Flinak) have been proposed as tritium breeders for fusion reactors and heat-transfer fluids for high-temperature fission reactors. The melting point of mixed molten salts is important in fusion and fission reactor designs. An analytical method using the activity coefficient of the Margules' equation and another method using an equilibrium constant when a new phase appears in the phase diagram are proposed for calculating melting points according to whether or not the new phase appears. First, the melting points of pure fluorides of LiF, NaF, KF, and BeF2 are investigated in detail, and uncertainties in the thermodynamic properties of the targeted molten salt mixtures are clarified. Then, the melting points of some binary- and tertiary-component fluoride molten salt mixtures of LiF + NaF (Flina), LiF + KF (Flik), NaF + KF (Fnak), LiF + NaF + KF (Flinak), LiF + BeF2 (Flibe), and NaF + BeF2 (Fnabe) are analytically investigated to enhance their wider application in fusion and fission reactors. Estimated melting points are compared with experimental data reported previously. Estimation errors are within 3.0 K (0.3%) for the pure fluorides and within 34 K (5.2%) for the binary or tertiary fluoride mixtures. Although estimation errors for the Flinak system are larger than those of previous reference data, the present estimation does not include an accommodation factor, and the parameter values included in the estimation are consistent with other thermodynamic data. The values of the activity coefficient used for estimation of the Flinak system and the equilibrium constant included in estimation of the Flibe and Fnabe systems are consistent with relevant thermodynamic properties. Therefore, the present method can be applied to estimate melting points for a range of multicomponent fluoride mixtures.

UR - http://www.scopus.com/inward/record.url?scp=84908454567&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84908454567&partnerID=8YFLogxK

U2 - 10.13182/FST13-694

DO - 10.13182/FST13-694

M3 - Article

AN - SCOPUS:84908454567

VL - 66

SP - 322

EP - 336

JO - Fusion Science and Technology

JF - Fusion Science and Technology

SN - 1536-1055

IS - 2

ER -