TY - JOUR
T1 - Estradiol rapidly modulates synaptic plasticity of hippocampal neurons
T2 - Involvement of kinase networks
AU - Hasegawa, Yoshitaka
AU - Hojo, Yasushi
AU - Kojima, Hiroki
AU - Ikeda, Muneki
AU - Hotta, Keisuke
AU - Sato, Rei
AU - Ooishi, Yuuki
AU - Yoshiya, Miyuki
AU - Chung, Bon Chu
AU - Yamazaki, Takeshi
AU - Kawato, Suguru
N1 - Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015/9/24
Y1 - 2015/9/24
N2 - Estradiol (E2) is locally synthesized within the hippocampus in addition to the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. Molecular mechanisms of modulation through synaptic estrogen receptor (ER) and its downstream signaling, however, have been still unknown. We investigated induction of LTP by the presence of E2 upon weak theta burst stimulation (weak-TBS) in CA1 region of adult male hippocampus. Since only weak-TBS did not induce full-LTP, weak-TBS was sub-threshold stimulation. We observed LTP induction by the presence of E2, after incubation of hippocampal slices with 10 nM E2 for 30 min, upon weak-TBS. This E2-induced LTP was blocked by ICI, an ER antagonist. This E2-LTP induction was inhibited by blocking Erk MAPK, PKA, PKC, PI3K, NR2B and CaMKII, individually, suggesting that Erk MAPK, PKA, PKC, PI3K and CaMKII may be involved in downstream signaling for activation of NMDA receptors. Interestingly, dihydrotestosterone suppressed the E2-LTP. We also investigated rapid changes of dendritic spines (=postsynapses) in response to E2, using hippocampal slices from adult male rats. We found 1 nM E2 increased the density of spines by approximately 1.3-fold within 2 h by imaging Lucifer Yellow-injected CA1 pyramidal neurons. The E2-induced spine increase was blocked by ICI. The increase in spines was suppressed by blocking PI3K, Erk MAPK, p38 MAPK, PKA, PKC, LIMK, CaMKII or calcineurin, individually. On the other hand, blocking JNK did not inhibit the E2-induced spine increase. Taken together, these results suggest that E2 rapidly induced LTP and also increased the spine density through kinase networks that are driven by synaptic ER.
AB - Estradiol (E2) is locally synthesized within the hippocampus in addition to the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. Molecular mechanisms of modulation through synaptic estrogen receptor (ER) and its downstream signaling, however, have been still unknown. We investigated induction of LTP by the presence of E2 upon weak theta burst stimulation (weak-TBS) in CA1 region of adult male hippocampus. Since only weak-TBS did not induce full-LTP, weak-TBS was sub-threshold stimulation. We observed LTP induction by the presence of E2, after incubation of hippocampal slices with 10 nM E2 for 30 min, upon weak-TBS. This E2-induced LTP was blocked by ICI, an ER antagonist. This E2-LTP induction was inhibited by blocking Erk MAPK, PKA, PKC, PI3K, NR2B and CaMKII, individually, suggesting that Erk MAPK, PKA, PKC, PI3K and CaMKII may be involved in downstream signaling for activation of NMDA receptors. Interestingly, dihydrotestosterone suppressed the E2-LTP. We also investigated rapid changes of dendritic spines (=postsynapses) in response to E2, using hippocampal slices from adult male rats. We found 1 nM E2 increased the density of spines by approximately 1.3-fold within 2 h by imaging Lucifer Yellow-injected CA1 pyramidal neurons. The E2-induced spine increase was blocked by ICI. The increase in spines was suppressed by blocking PI3K, Erk MAPK, p38 MAPK, PKA, PKC, LIMK, CaMKII or calcineurin, individually. On the other hand, blocking JNK did not inhibit the E2-induced spine increase. Taken together, these results suggest that E2 rapidly induced LTP and also increased the spine density through kinase networks that are driven by synaptic ER.
UR - http://www.scopus.com/inward/record.url?scp=84941599036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84941599036&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2014.12.056
DO - 10.1016/j.brainres.2014.12.056
M3 - Article
C2 - 25595055
AN - SCOPUS:84941599036
SN - 0006-8993
VL - 1621
SP - 147
EP - 161
JO - Molecular Brain Research
JF - Molecular Brain Research
ER -