Abstract
The grain boundary effect on the strength was evaluated through nanoindentation technique for Fe-0.4C-Cr-Mo steels that were produced by the ausform-tempered (AF) and conventional quench-tempered (QT) processes. A semiquantitative Hall-Petch plot was made to determine the locking parameter k for the two alloys using nanohardness, micro-Vickers hardness, and grain size. The k value for the QT sample is significantly larger than that for the AF sample and is attributed to the film-like carbides on the grain boundaries of the QT sample. The lower k value of the AF sample is one of the factors for the improved delayed fracture property in the AF compared to that of the QT sample.
Original language | English |
---|---|
Pages (from-to) | 1301-1305 |
Number of pages | 5 |
Journal | Materials Transactions |
Volume | 46 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 1 2005 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering