TY - JOUR
T1 - Evaluation of the inhibitory effects of chloroform on ortho-chlorophenol- and chloroethenedechlorinating Desulfitobacterium strains
AU - Futagami, Taiki
AU - Fukaki, Yuko
AU - Fujihara, Hidehiko
AU - Takegawa, Kaoru
AU - Goto, Masatoshi
AU - Furukawa, Kensuke
N1 - Funding Information:
This work was supported in part by a Ministry of Education, Science, Sports and Culture Grant-in-Aid for Scientific Research (C) (no. 22580382, to K.F.). The cost of publication was supported in part by the Research Grant for Young Investigators of Faculty of Agriculture, Kyushu University.
PY - 2013
Y1 - 2013
N2 - Organohalide-respiring Desulfitobacterium strains are believed to play an important role in the bioremediation and natural attenuation of chlorinated aliphatic and aromatic hydrocarbons. However, several studies have reported that chloroform significantly inhibits microbial reductive dechlorination of chloroethene. In this study, we examined the effect of chloroform on several Desulfitobacterium strains, including ortho-chlorophenol-dechlorinating Desulfitobacterium dehalogenans JW/IU-1 and Desulfitobacterium hafniense DCB-2, and also the chloroethene-dechlorinating strain D. hafniense TCE1. In medium containing 3-chloro-4-hydroxyphenylacetate as an electron acceptor, chloroform inhibited the growth of strains JW/IU-1 and DCB-2. Although chloroform did not directly inhibit dechlorination of 3-chloro-4-hydroxyphenylacetate by resting cells, cells cultivated with chloroform showed decreased dechlorination activity. Moreover, transcription of the gene encoding the reductive dehalogenase CprA decreased significantly in cells cultivated with chloroform. These results indicate that chloroform inhibits the growth and dechlorination activity of strains JW/IU-1 and DCB-2 via inhibition of cprA transcription. In contrast, cultivation of strain TCE1 in the presence of chloroform gave rise to a PceA reductive dehalogenase gene-deletion variant of strain TCE1; a similar phenomenon was observed in our previous study of chloroethene-dechlorinating D. hafniense strain Y51. Our results suggest that chloroform extensively inhibits the dechlorination activity of Desulfitobacterium strains, and that the inhibitory mechanism appears to differ between ortho-chlorophenol dechlorinators and chloroethene dechlorinators.
AB - Organohalide-respiring Desulfitobacterium strains are believed to play an important role in the bioremediation and natural attenuation of chlorinated aliphatic and aromatic hydrocarbons. However, several studies have reported that chloroform significantly inhibits microbial reductive dechlorination of chloroethene. In this study, we examined the effect of chloroform on several Desulfitobacterium strains, including ortho-chlorophenol-dechlorinating Desulfitobacterium dehalogenans JW/IU-1 and Desulfitobacterium hafniense DCB-2, and also the chloroethene-dechlorinating strain D. hafniense TCE1. In medium containing 3-chloro-4-hydroxyphenylacetate as an electron acceptor, chloroform inhibited the growth of strains JW/IU-1 and DCB-2. Although chloroform did not directly inhibit dechlorination of 3-chloro-4-hydroxyphenylacetate by resting cells, cells cultivated with chloroform showed decreased dechlorination activity. Moreover, transcription of the gene encoding the reductive dehalogenase CprA decreased significantly in cells cultivated with chloroform. These results indicate that chloroform inhibits the growth and dechlorination activity of strains JW/IU-1 and DCB-2 via inhibition of cprA transcription. In contrast, cultivation of strain TCE1 in the presence of chloroform gave rise to a PceA reductive dehalogenase gene-deletion variant of strain TCE1; a similar phenomenon was observed in our previous study of chloroethene-dechlorinating D. hafniense strain Y51. Our results suggest that chloroform extensively inhibits the dechlorination activity of Desulfitobacterium strains, and that the inhibitory mechanism appears to differ between ortho-chlorophenol dechlorinators and chloroethene dechlorinators.
UR - http://www.scopus.com/inward/record.url?scp=84881235858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881235858&partnerID=8YFLogxK
U2 - 10.1186/2191-0855-3-30
DO - 10.1186/2191-0855-3-30
M3 - Article
C2 - 23705686
AN - SCOPUS:84881235858
VL - 3
SP - 1
EP - 8
JO - AMB Express
JF - AMB Express
SN - 2191-0855
M1 - 30
ER -